首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
To every Steiner system with parameters on and blocks , we can assign its characteristic vector , which is a ‐vector whose entries are indexed by the ‐subsets of such that for each ‐subset of if and only if . In this paper, we show that the dimension of the vector space generated by all of the characteristic vectors of Steiner systems with parameters is , provided that and there is at least one such system.  相似文献   

2.
The construction of Bays and deWeck [1] of a SteinerQuadruple System SQS(14) was generalized by Piotrowskiin his dissertation ([7], p. 34) to an SQS(2p), p 7 mod 12 with a group transitive on thepoints. However he gave no proof of his construction and hispresesntation was open to misinterpretation. So Hanfried Lenzsuggested to analyse Piotrowski's construction and to supplyit with a proof. In the following we will present Piotrowski'sideas somewhat differently and will furnish a proof of the construction.  相似文献   

3.
    
The problem we consider in this article is motivated by data placement, in particular data replication in distributed storage and retrieval systems. We are given a set V of v servers along with b files (data, documents). Each file is replicated on exactly k servers. A placement consists in finding a family of b subsets of V (representing the files) called blocks, each of size k. Each server has some probability to fail and we want to find a placement that minimizes the variance of the number of available files. It was conjectured that there always exists an optimal placement (with variance better than any other placement for any value of the probability of failure). We show that the conjecture is true, if there exists a well‐balanced design—that is, a family of blocks—each of size k, such that each j‐element subset of V, , belongs to the same or almost the same number of blocks (difference at most one). The existence of well‐balanced designs is a difficult problem as it contains, as a subproblem, the existence of Steiner systems. We completely solve the case and give bounds and constructions for and some values of v and b.  相似文献   

4.
The intersection of two Steiner triple systems and is the set . The fine intersection problem for Steiner triple systems is to determine for each v, the set I(v), consisting of all possible pairs (m, n) such that there exist two Steiner triple systems of order v whose intersection satisfies and . We show that for v ≡ 1 or 3 (mod 6), |I(v)| = Θ(v 3), where previous results only imply that |I(v)| = Ω(v 2). Received: January 23, 2006. Final Version received: September 2, 2006  相似文献   

5.
    
Generalized Steiner Systems, GS(2, 3, n, g), are equivalent to maximum constant weight codes over an alphabet of size g + 1 with distance 3 and weight 3 in which each codeword has length n. We construct Generalized Steiner Triple Systems, GS(2, 3, n, g), when g ≡ 3(mod 6). © 1997 John Wiley & Sons, Inc. J Combin Designs 5:417–432, 1997  相似文献   

6.
    
In this article, it is shown that there is a partitioning of the set of 3‐arcs in a projective plane of order three into nine pairwise disjoint Steiner triple systems of order 13.  相似文献   

7.
    
We study the list chromatic number of Steiner triple systems. We show that for every integer s there exists n0=n0(s) such that every Steiner triple system on n points STS(n) with nn0 has list chromatic number greater than s. We also show that the list chromatic number of a STS(n) is always within a log n factor of its chromatic number. © 2009 Wiley Periodicals, Inc. J Combin Designs 17: 314–322, 2009  相似文献   

8.
    
A well‐known, and unresolved, conjecture states that every partial Steiner triple system of order u can be embedded in a Steiner triple system of order υ for all υ ≡ 1 or 3, (mod 6), υ ≥ 2u + 1. However, some partial Steiner triple systems of order u can be embedded in Steiner triple systems of order υ <2u + 1. A more general conjecture that considers these small embeddings is presented and verified for some cases. © 2002 Wiley Periodicals, Inc. J Combin Designs 10: 313–321, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jcd.10017  相似文献   

9.
Hill [6] showed that the largest cap in PG(5,3) has cardinality 56. Using this cap it is easy to construct a cap of cardinality 45 in AG(5,3). Here we show that the size of a cap in AG(5,3) is bounded above by 48. We also give an example of three disjoint 45-caps in AG(5,3). Using these two results we are able to prove that the Steiner triple system AG(5,3) is 6-chromatic, and so we exhibit the first specific example of a 6-chromatic Steiner triple system.  相似文献   

10.
We continue the study of specialized block-colourings of Steiner triple systems initiated in [2] in which the triples through any element are coloured according to a given partition π of the replication number. Such colourings are equitable if π is an equitable partition (i.e., the difference between any two parts of π is at most one). Our main results deal with colourings according to equitable partitions into two, and three parts, respectively.  相似文献   

11.
We consider colourings of Steiner systems S(2,3,v) and S(2,4,v) in which blocks have prescribed colour patterns, as a refinement of the classical weak colourings. The main question studied is, given an integer k, does there exist a colouring of given type using exactly k colours? For several types of colourings, a complete answer to this question is obtained while for other types, partial results are presented. We also discuss the question of the existence of uncolourable systems.  相似文献   

12.
A hexagon triple is the graph consisting of the three triangles (triples) {a,b,c},{c,d,e}, and {e,f,a}, where a,b,c,d,e, and f are distinct. The triple {a,c,e} is called an inside triple. A hexagon triple system of order n is a pair (X,H) where H is a collection of edge disjoint hexagon triples which partitions the edge set of Kn with vertex set X. The inside triples form a partial Steiner triple system. We show that any Steiner triple system of order n can be embedded in the inside triples of a hexagon triple system of order approximately 3n.  相似文献   

13.
In this paper, we prove that for any forest FKn, the edges of E(Kn)?E(F) can be partitioned into O(nlogn) cliques. This extends earlier results on clique partitions of the complement of a perfect matching and of a hamiltonian path in Kn.In the second part of the paper, we show that for n sufficiently large and any ε∈(0,1], if a graph G has maximum degree O(n1-ε), then the edges of E(Kn)?E(G) can be partitioned into cliques provided there exist certain Steiner systems. Furthermore, we show that there are such graphs G for which Ω(ε2n2-2ε) cliques are required in every clique partition of E(Kn)?E(G).  相似文献   

14.
    
A cross‐free set of size m in a Steiner triple system is three pairwise disjoint m‐element subsets such that no intersects all the three ‐s. We conjecture that for every admissible n there is an STS(n) with a cross‐free set of size which if true, is best possible. We prove this conjecture for the case , constructing an STS containing a cross‐free set of size 6k. We note that some of the 3‐bichromatic STSs, constructed by Colbourn, Dinitz, and Rosa, have cross‐free sets of size close to 6k (but cannot have size exactly 6k). The constructed STS shows that equality is possible for in the following result: in every 3‐coloring of the blocks of any Steiner triple system STS(n) there is a monochromatic connected component of size at least (we conjecture that equality holds for every admissible n). The analog problem can be asked for r‐colorings as well, if and is a prime power, we show that the answer is the same as in case of complete graphs: in every r‐coloring of the blocks of any STS(n), there is a monochromatic connected component with at least points, and this is sharp for infinitely many n.  相似文献   

15.
A Steiner triple system (briefly ST) is in 1-1 correspondence with a Steiner quasigroup or squag (briefly SQ) [B. Ganter, H. Werner, Co-ordinatizing Steiner systems, Ann. Discrete Math. 7 (1980) 3-24; C.C. Lindner, A. Rosa, Steiner quadruple systems: A survey, Discrete Math. 21 (1979) 147-181]. It is well known that for each n≡1 or 3 (mod 6) there is a planar squag of cardinality n [J. Doyen, Sur la structure de certains systems triples de Steiner, Math. Z. 111 (1969) 289-300]. Quackenbush expected that there should also be semi-planar squags [R.W. Quackenbush, Varieties of Steiner loops and Steiner quasigroups, Canad. J. Math. 28 (1976) 1187-1198]. A simple squag is semi-planar if every triangle either generates the whole squag or the 9-element squag. The first author has constructed a semi-planar squag of cardinality 3n for all n>3 and n≡1 or 3 (mod 6) [M.H. Armanious, Semi-planar Steiner quasigroups of cardinality 3n, Australas. J. Combin. 27 (2003) 13-27]. In fact, this construction supplies us with semi-planar squags having only nontrivial subsquags of cardinality 9. Our aim in this article is to give a recursive construction as n→3n for semi-planar squags. This construction permits us to construct semi-planar squags having nontrivial subsquags of cardinality >9. Consequently, we may say that there are semi-planar (or semi-planar ) for each positive integer m and each n≡1 or 3 (mod 6) with n>3 having only medial subsquags at most of cardinality 3ν (sub-) for each ν∈{1,2,…,m+1}.  相似文献   

16.
We attach a graph to every Steiner triple system. The chromatic number of this graph is related to the possibility of extending the triple system to a quadruple system. For example, the triple systems with chromatic number one are precisely the classical systems of points and lines of a projective geometry over the two-element field, the Hall triple systems have chromatic number three (and, as is well-known, are extendable) and all Steiner triple systems whose graph has chromatic number two are extendable. We also give a configurational characterization of the Hall triple systems in terms of mitres.  相似文献   

17.
Geometric properties are used to determine the chromatic number of AG(4, 3) and to derive some important facts on the chromatic number of PG(n, 2). It is also shown that a 4-chromatic STS(v) exists for every admissible order v ≥ 21. © 1999 John Wiley & Sons, Inc. J Combin Designs 7: 1–10, 1999  相似文献   

18.
    
For all odd integers n ≥ 1, let Gn denote the complete graph of order n, and for all even integers n ≥ 2 let Gn denote the complete graph of order n with the edges of a 1‐factor removed. It is shown that for all non‐negative integers h and t and all positive integers n, Gn can be decomposed into h Hamilton cycles and t triangles if and only if nh + 3t is the number of edges in Gn. © 2004 Wiley Periodicals, Inc.  相似文献   

19.
    
It is shown that for m = 2d ? 1, 2d, 2d + 1, and d ≥ 1, the set {1, 2,…, 2m + 2}, ? {2,k} can be partitioned into differences d,d + 1,…,d + m ? 1 whenever (m,k) ≡ (0,0), (1,d + 1), (2, 1), (3,d) (mod (4,2)) and (d,m,k) ≠ (1,1,3), (2,3,7) (where (x,y) ≡ (u,ν) mod (m,n) iff xu (mod m) and yν (mod n)). It is also shown that if m ≥ 2d ? 1 and m ? [2d + 2, 8d ? 5], then the set {1, 2, …, 2m + 1} ? {k} can be partitioned into differences d,d + 1,…,d + m ? 1 whenever (m,k) ≡ (0, 1), (1,d), (2,0), (3,d + 1) mod (4,2). Finally, for d = 4 we obtain a complete result for when {1,…,2m + 1} ? {k} can be partitioned into differences 4,5,…,m + 3. © 2004 Wiley Periodicals, Inc.  相似文献   

20.
Z. Tian 《Discrete Mathematics》2010,310(4):700-713
Motivated by constructing cyclic simple designs, we consider how to decomposing all the triples of Zv into cyclic triple systems. Furthermore, we define a large set of cyclic triple systems to be a decomposition of triples of Zv into indecomposable cyclic designs. Constructions of decompositions and large sets are given. Some infinite classes of decompositions and large sets are obtained. Large sets of small v with odd v<97 are also given. As an application, the results are used to construct cyclic simple triple systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号