首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work, first‐principles density functional theory (DFT) is used to predict oxygen adsorption on two types of hybrid carbon and boron‐nitride nanotubes (CBNNTs), zigzag (8,0), and armchair (6,6). Although the chemisorption of O2 on CBNNT(6,6) is calculated to be a thermodynamically unfavorable process, the binding of O2 on CBNNT(8,0) is found to be an exothermic process and can form both chemisorbed and physisorbed complexes. The CBNNT(8,0) has very different O2 adsorption properties compared with pristine carbon nanotubes (CNTs) and boron‐nitride nanotube (BNNTs). For example, O2 chemisorption is significantly enhanced on CBNNTs, and O2 physisorption complexes also show stronger binding, as compared to pristine CNTs or BNNTs. Furthermore, it is found that the O2 adsorption is able to increase the conductivity of CBNNTs. Overall, these properties suggest that the CBNNT hybrid nanotubes may be useful as a gas sensor or as a catalyst for the oxygen reduction reaction. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
In this work, we report a new mixed‐extractor strategy to improve the sorting yield of large‐diameter semiconducting single‐walled carbon nanotubes (s‐SWCNTs) with high purity. In the new mixed‐extractor strategy, two kinds of conjugated polymers with different rigidity, poly(9,9‐n‐dihexyl‐2,7‐fluorene‐alt‐9‐phenyl‐3,6‐carbazole) (PDFP) and poly(9,9‐dioctylfluorene‐alt‐benzothiadiazole) (P8BT), are used to sort large‐diameter s‐SWCNTs through two simple sonication processes. To our surprise, although PDFP itself shows no selectivity toward s‐SWCNTs, it can greatly enhance the sorting yield of P8BT. Using the PDFP/P8BT mixed‐extractor method, the yield of sorted s‐SWCNTs has been enhanced by 5 times with a purity above 99 % in comparison to that using P8BT single‐extractor method. In addition, the photoluminescence (PL) excitation maps shows that the PDFP/P8BT mixed‐extractor system not only enhances the sorting yield substantially, but also tends to be enrichment of (15,4) SWCNTs with the diameter of 1.36 nm.  相似文献   

3.
The in situ polymerization functionalization of single‐walled carbon nanotubes (SWNT) with polystyrene (PS) is demonstrated utilizing stabilized nanotubes reduced by dissolution of excess lithium in ammonia. Short PS chains are tethered to SWNT sidewalls to facilitate a robust compatibilization strategy for nanotube dispersion. To augment extents of functionalization, while maintaining in situ dispersion stability, the effects of multiple monomer addition steps and varied carbon to lithium ratio are studied. The developed functionalization scheme is also effective for the reductive alkylation of SWNT with dodecyl surface groups. By studying the dodecylated SWNT, the molecular weight of grafted PS chains is estimated. The discovery of a general experimental artifact has implications for all functionalization routes utilizing reduction with lithium in ammonia. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3716–3725  相似文献   

4.
Single‐walled carbon nanotubes (SWNTs) possess extraordinary properties, but suffer from poor solubility and a lack of purity. Of the possible routes available to solubilize and purify nanotube samples, the use of noncovalent functionalization is ideal as carbon nanotube properties are not deleteriously affected. A multitude of different dispersants have been investigated thus far, but of particular interest is deoxyribonucleic acid (DNA), which has previously been demonstrated to effectively separate metallic and semiconducting carbon nanotubes. Here, we investigate the ability of synthetic nucleobase‐containing poly(acrylamide) polymers to produce stable nanotube dispersions in organic solvents. Polymers bearing different nucleobase and backbone structures, as well as block copolymers with different block sequences were investigated. Polymer:SWNT mass ratios and solvent compositions were optimized for the nucleobase‐functionalized polymers, and semiconducting and metallic SWNT populations were identified by a combination of UV‐Vis‐NIR absorption, Raman, and fluorescence spectroscopy. These results demonstrate the capacity for synthetic DNA analogues to disperse SWNTs in organic media. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2611–2617  相似文献   

5.
We previously showed that in N,N‐dimethylformamide (DMF), poly(9‐anthracenylmethyl methacrylate) (PAMMA) and poly(2‐naphthylmethacrylate) selectively disperse semiconducting and metallic single‐walled carbon nanotubes (SWNTs), respectively. We have also proposed a new noncovalent polymer interaction based on photon induced dipole–dipole interaction to account for the metallicity‐based selectivity. In this article, we investigate two other polymethacrylates, that is, poly(benzyl methacrylate) (PBMA) and poly(methylmethacrylate)‐co‐(9‐anthracenylmethyl acrylate) (PMMA‐c‐PAMA) in the light of our previously proposed photon‐induced dipole–dipole interaction. We find that PBMA and PMM‐c‐PAMMA in DMF show no metallicity selectivity. The different selective behavior of the four polymers in DMF manifests the decisive influence of the side aromatic group in determining their metallicity selectivity. The nonpreferential energy transfer from PMMA‐c‐PAMA to SWNTs and the nonoverlap of PBMA fluorescence (in the ultraviolet range) with nanotube absorption account for their nonselectivity of specific nanotube species. Further, the parallel relationship between the diameters of extracted tube species and the affinity between polymers and solvents suggests the leading role of the polymeric conformation on the diameter selectivity. A sufficient (i.e., 2 weeks) standing time of the SWNTs solution after sonication, during which the polymers presumably optimize their conformation to the SWNTs, was found to be essential to the enrichment. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

6.
The interaction between single‐walled carbon nanotubes (SWNTs) and graphene were studied with first‐principles calculations. Both SWNTs and single‐layer graphene (SLG) or double‐layer graphene (DLG) display more remarkable deformations with the increase of SWNT diameter, which implies a stronger interaction between SWNTs and graphene. Besides, in DLG, deformation of the upper‐layer graphene is less than in SLG. Zigzag SWNTs show stronger interactions with SLG than armchair SWNTs, whereas the order is reversed for DLG, which can be interpreted by the mechanical properties of SWNTs and graphene. Density of states and band structures were also studied, and it was found that the interaction between a SWNT and graphene is not strong enough to bring about obvious influence on the electronic structures of SWNTs. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
Polyethylene (PE) chains grafted onto the sidewalls of SWCNTs (SWCNT‐g‐PE) were successfully synthesized via ethylene copolymerization with functionalized single‐walled carbon nanotubes (f‐SWCNTs) catalyzed by rac‐(en)(THInd)2ZrCl2/MAO. Here f‐SWCNTs, in which α‐alkene groups were chemically linked on the sidewalls of SWCNTs, were synthesized by Prato reaction. The composition and microstructure of SWCNT‐g‐PE were characterized by means of 1H NMR, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analyses (TGA), field‐emission scanning electron microscope (FESEM), and transmission electron microscope (TEM). Nanosized cable‐like structure was formed in the SWCNT‐g‐PE, in which the PE formed a tubular shell and several SWCNTs bundles existed as core. The formation of the above morphology in the SWCNT‐g‐PE resulted from successfully grafting of PE chains onto the surface of SWCNTs via copolymerization. The grown PE chains grafted onto the sidewall of the f‐SWCNTs promoted the exfoliation of the mass nanotubes. Comparing with pure PE, the physical mixture of PE/f‐SWCNTs and in situ PE/SWCNTs mixture, thermal stability, and mechanical properties of SWCNT‐g‐PE were higher because of the chemical bonding between the f‐SWCNTs and PE chains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5459–5469, 2007  相似文献   

8.
Previous approaches used to decorate latently reactive conjugated polymer‐coated carbon nanotube complexes have utilized “grafting‐to” strategies. Here, we coat the carbon nanotube surface with a conjugated polymer whose side chains contain the radical initiator, α‐bromoisobutyrate, which enables atom transfer radical polymerization (ATRP) from the polymer–nanotube surface. Using light to generate Cu(I) in situ, ATRP is used to grow narrow dispersity polymer chains from the polymer–nanotube surface. We confirm the successful polymerization of (meth)acrylates from the polymer–nanotube surface using a combination of gel permeation chromatography and infrared spectroscopy. Strikingly, we demonstrate that nanotube optoelectronic properties are preserved after radical‐mediated polymer grafting using Raman spectroscopy and photoluminescence mapping. Overall, this work elucidates a method to grow narrow dispersity polymer chains from the polymer–nanotube surface using light‐driven radical chemistry, with concurrent preservation of nanotube optoelectronic properties. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2015–2020  相似文献   

9.
First principles calculations of the electronic structure and total energy of narrow zigzag carbon nanotubes and their corresponding flat graphene strips have been carried out to assess the relative stability of the tube form. The results indicate that the smallest energetically stable carbon nanotube has a radius of about 0.2 nm. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

10.
The pore structure, sorption parameters, and chemical composition of the surface of multiwalled carbon nanotubes synthesized by catalytic pyrolysis were determined. The dependences of the amount of cholic acid adsorbed by the nanotube surface on time, pH, and concentration of an equilibrium solution were studied. Physical adsorption of cholic acid is mainly the outcome of nonspecific interactions between the acid and the surface of the nanotubes. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1712–1715, October, 2006.  相似文献   

11.
The open edge reconstruction of half‐saturated (6,0) zigzag carbon nanotube (CNT) was introduced by density functional calculations. The multistep rearrangement was demonstrated as a regioselective process to generate a defective edge with alternating pentagons and heptagons. Not only the thermal stability was found to be enhanced significantly after reconstruction but also the total spin of CNT was proved to be reduced gradually from high‐spin septet to close‐shell singlet, revealing the critical role of deformed edge on the geometrical and magnetic properties of open‐ended CNTs. Kinetically, the initial transformation was confirmed as the rate‐determining step with relatively the largest reaction barrier and the following steps can take place spontaneously. © 2016 Wiley Periodicals, Inc.  相似文献   

12.
A new type of water‐soluble single‐walled carbon nanotubes (SWNTs) was synthesized by grafting of dodecyl quaternary ammonium bromides. Results of Fourier transform infrared and proton nuclear magnetic resonance spectroscopic analyses confirmed the successful synthesis. Water‐soluble performance of functionalized SWNTs, i.e. N+‐SWNTs, has been studied in terms of solubility and stability. It was found that the solubility could reach up to 110 mg.l?1 and as‐prepared solution possesses a good stability over the PH range of 6.87–11.25. Based on these properties, one of the important applications of N+‐SWNTs was demonstrated to prepare poly(vinyl alcohol) (PVA) composites. Owing to critical issues of uniform dispersion and enhanced interfacial PVA‐nanotube interaction having been simultaneously resolved to a reasonable extent, the composite film with only 0.3 wt% N+‐SWNTs showed an increase of 33% and 32% in tensile strength and Young's modulus, respectively, over neat PVA film. Moreover, a high optical quality and slightly increased glass transition temperature were also observed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Grafting of aldehyde structures to single‐walled carbon nanotubes (SWNTs) has been carried out to endow the nanotubes with appropriate wettability. The results of Fourier transform infrared (FTIR) spectroscopy, ultraviolin‐visible‐near infrared (UV‐VIS‐NIR) spectroscopy, and Raman spectroscopy provide the supporting evidence of aldehyde structures covalently attached to SWNTs. The improved wettability of aldehyde‐functionalized SWNTs (f‐SWNTs) was demonstrated by their good dispersion in organic medium, namely, ethanol and phenolic resin. The prospective covalent bonding between aldehyde structures on the surfaces of f‐SWNTs and phenolic resin makes it possible to prepare an integrated composite with the enhanced‐interfacial adhesion. The f‐SWNT composites, therefore, show much higher average values of dσ/dWCNT and dE/dWCNT (i.e., tensile strength and Young's modulus per unit weight fraction) compared with the composites filled with pristine SWNTs or MWNTs. The respective maxima are 9680 MPa and 320 GPa. It is thus feasible for f‐SWNTs to prepare the moderately enhanced but lightweight phenolic composites. Furthermore, the incorporation of f‐SWNTs does not limit the application of phenolic resin as insulation material. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6135–6144, 2009  相似文献   

14.
Uniform dispersion and strong interfacial interaction are two critical prerequisites for application of single‐walled carbon nanotubes (SWNTs) in polymer composites. To endow the composites with multifunctional feature, no damage on the chemical/electronic structure of SWNTs is also usually required. With these ends in view, two epoxide‐containing pyrene derivatives (EpPys) were designed, synthesized, and used as reactive noncovalent dispersants for developing multifunctional epoxy/SWNT composites. One having longer chain length between epoxide group and pyrene moiety, that is, EpPy‐16, shows higher dispersing efficiency and provides the nanotube dispersion with better stability, thus picking up for subsequent studies. Systematic characterization on SWNT/EpPy‐16 hybrid demonstrates that 13.2 wt % of EpPy‐16 is adsorbed on the SWNT surface through strong π‐stacking interaction, and intrinsic electronic structure of SWNTs is basically reserved. The solution‐based process adopted here preserves the good SWNT dispersing state in dispersion into the composites. Simultaneously, enhanced interfacial interaction is also realized by using EpPy‐16, which interacts noncovalently with SWNT but connects covalently to epoxy network. As a result, the composites acquire 37 and 22% increments in tensile strength and Young's modulus, respectively, relative to that of neat resin. A low‐electrical percolation threshold of 0.1 wt % SWNTs and improved thermal properties were also observed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
Electrospinning of fibers composed of poly(3‐hexylthiophene) (P3HT), fullerene derivative, phenyl‐C61‐butyric acid methyl ester (PCBM), and single‐walled carbon nanotubes (SWNT) is reported. While of great promise for photovoltaic applications, morphological control of functional structures is a great challenge for most processing methods. It is demonstrated that the use of a tailor‐made block‐copolymer for dispersion of individual SWNT enables the preparation of stable dispersions of individual tubes that may be further cospun from chloroform solutions with PCBM and P3HT into submicron fibers. The block copolymer used to mediate the colloidal and interfacial interactions in the combined system enables the spinning of centimeters long and uniform fibers. Structural characterization indicates a high degree of ordering and alignment within the fibers and absorption and quenching of the photoluminescence indicate significant interactions among the components. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1263–1268, 2011  相似文献   

16.
To address the choice of an appropriate value of electron smearing to facilitate self‐consistent field (SCF) convergence, we studied the interaction of doxorubicin with short armchair and zigzag single‐walled carbon nanotube models with closed caps, at the PWC/DNP level of density functional theory. By gradually reducing the electron smearing value from a large and most commonly used one of 0.005 Ha to zero (Fermi occupation), we monitored the changes in close contacts between the interacting species, total energy of the molecular system, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy and isosurfaces, HOMO‐LUMO gap energy, and plots of electrostatic potential. It became evident that the commonly used smearing values of ≥0.001 Ha can alter the results significantly (for example, by one order of magnitude for HOMO–LUMO gap energy). We suggest the setting of electron smearing value at 0.0001 Ha, which does not imply too high computation cost and can guarantee the results close to the ones obtained with Fermi occupation. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

17.
Melt mixing with a polymer is a novel strategy to modify the surface property of carbon nanotube (CNT) conveniently and efficiently. In melt mixing process, the shearing and thermal issues can make polymer component wrapped around nanotubes via π–π stacking interaction. In this study, polystyrene‐coated multi‐walled carbon nanotubes (MWNTs) was achieved through simple melt mixing of polystyrene with MWNTs. PS and MWNTs were first melt mixed at various melt time and temperatures to find the optimum condition for preparing of PS‐coated MWNTs. Subsequently, the stability of polystyrene interacted with MWNTs was estimated via ultrasonication and thermal gravimetric analysis (TGA). Finally, the physically modified MWNTs were used to enhance polystyrene. An obvious mechanical reinforcement can be achieved, which approves a huge potential of application of these modified MWNTs in practical composite products. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
A commercially available aliphatic thermoplastic polyurethane formulated with a methylene bis(cyclohexyl) diisocyanate hard segment and a poly(tetramethylene oxide) soft segment and chain‐extended with 1,4‐butanediol was dissolved in dimethylformamide and mixed with dispersed single‐walled carbon nanotubes. The properties of composites made with unfunctionalized nanotubes were compared with the properties of composites made with nanotubes functionalized to contain hydroxyl groups. Functionalization almost eliminated the conductivity of the tubes according to the conductivity of the composites above the percolation threshold. In most cases, functionalized and unfunctionalized tubes yielded composites with statistically identical mechanical properties. However, composites made with functionalized tubes did have a slightly higher modulus in the rubbery plateau region at higher nanotube fractions. Small‐angle X‐ray scattering patterns indicated that the dispersion reached a plateau in the unfunctionalized composites that was consistent with the plateau in the rubbery plateau region. The room‐temperature modulus and tensile strength increase was proportionally higher than almost all increases seen previously in thermoplastic polyurethanes; however, the increase was still an order of magnitude below what has been reported for the best nanotube–polymer systems. Nanotube addition increased the hard‐segment glass transition temperature slightly, whereas the soft‐segment glass transition was so diffuse that no conclusions could be drawn. Unfunctionalized tubes suppressed the crystallization of the hard segment; whereas functionalized tubes had no effect. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 490–501, 2007  相似文献   

19.
《Electrophoresis》2017,38(13-14):1669-1677
We demonstrate the separation of chirality‐enriched single‐walled carbon nanotubes (SWCNTs) by degree of surface functionalization using high‐performance CE. Controlled amounts of negatively charged and positively charged functional groups were attached to the sidewall of chirality‐enriched SWCNTs through covalent functionalization using 4‐carboxybenzenediazonium tetrafluoroborate or 4‐diazo‐N,N‐diethylaniline tetrafluoroborate, respectively. Surfactant‐ and pH‐dependent studies confirmed that under conditions that minimized ionic screening effects, separation of these functionalized SWCNTs was strongly dependent on the surface charge density introduced through covalent surface chemistry. For both heterogeneous mixtures and single‐chirality‐enriched samples, covalently functionalized SWCNTs showed substantially increased peak width in electropherogram spectra compared to nonfunctionalized SWCNTs, which can be attributed to a distribution of surface charges along the functionalized nanotubes. Successful separation of functionalized single‐chirality SWCNTs by functional density was confirmed with UV‐Vis‐NIR absorption and Raman scattering spectroscopies of fraction collected samples. These results suggest a high degree of structural heterogeneity in covalently functionalized SWCNTs, even for chirality‐enriched samples, and show the feasibility of applying CE for high‐performance separation of nanomaterials based on differences in surface functional density.  相似文献   

20.
Single‐walled carbon nanotubes (SWCNTs) have been functionalized with poly(γ‐benzyl‐L ‐glutamate)s (PBLGs) having well‐defined polymer molecular weight (Mn = 7.5–21.1 kg·mol?1) and molecular weight distribution (PDI = 1.05–1.20) by a graft‐to method. Toluene solutions containing 5 wt % free PBLG and variable amounts of PBLG‐functionalized SWCNTs (PBLG‐SWCNTs) form gels at room temperature. Differential scanning calorimetry (DSC) analysis reveals that the gelation occurs thermoreversibly, in accord with previous studies on the pristine PBLG/toluene gels. The heat of gel melting (ΔHm) is slightly elevated for the composite gels compared with the pristine gel, which suggests enhanced interactions between PBLGs in the former. But the gelation temperatures of the composites are unaffected by the presence of PBLG‐SWCNTs. Small‐angle X‐ray scattering (SAXS) analysis of the composite and pristine gels at different temperatures by the Guinier method suggests that PBLG‐SWCNTs promote interactions between PBLG rods, as indicated by the larger PBLG bundle size with increasing PBLG‐SWCNT content in the gel and the melt state. W/SAXS analysis of the dry gels reveals that PBLG‐SWCNTs induce significant changes in the PBLG packing order, resulting in a nematic phase, in contrast to a weakly ordered smectic C phase containing tilted PBLG rods that is observed in the pristine gel. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号