首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple synthesis of 2‐hydrazinylidene‐3‐hydroxy‐4H‐furo[3,2‐c]pyran‐4‐ones is described. A mixture of (isocyanoimino)(triphenyl)phosphorane, an aromatic aldehyde, and dehydroacetic acid (=3‐acetyl‐2‐hydroxy‐6‐methyl‐4H‐pyran‐4‐one) undergo a 1 : 1 : 1 addition reaction under mild conditions to afford the title compounds in excellent yields.  相似文献   

2.
A convenient approach to the synthesis of the previously unknown 7H‐furo[3,2‐b]pyran‐7‐ones based on the intramolecular cyclization of carbonyl derivatives of 5‐hydroxy‐2‐methyl‐4H‐pyran‐4‐one has been elaborated. Key intermediates in the synthesis of the target 7H‐furo[3,2‐b]pyran‐7‐ones are 3‐hydroxy‐6‐methyl‐2‐(2‐oxo‐2‐arylethyl)‐4H‐pyran‐4‐ones. They are formed as a result of multicomponent condensation of 5‐hydroxy‐2‐methyl‐4H‐pyran‐4‐one with arylglyoxals and 4‐methoxyaniline.  相似文献   

3.
An efficient synthesis of 3‐bromoacetyl‐4‐hydroxy‐6‐methyl‐2H‐pyran‐2‐one by bromination of dehydroacetic acid in glacial acetic acid is described. Novel 4‐hydroxy‐6‐methyl‐3‐(2‐substituted‐thiazol‐4‐yl)‐2H‐pyran‐2‐ones have been prepared from the reaction of 3‐bromoacetyl‐4‐hydroxy‐6‐methyl‐2H‐pyran‐2‐one with thioamides, thiourea, and diphenylthiocarbazone. The condensation reaction of 6‐methyl‐4H‐furo[3,2c]pyran‐3,4‐dione, obtained from the reaction of 3‐bromoacetyl‐4‐hydroxy‐6‐methyl‐2H‐pyran‐2‐one with aliphatic amines, with benzaldehydes and acetophenones led to novel 2‐arylidene‐6‐methyl‐2H‐furo[3,2‐c]pyran‐3,4‐diones and 6‐(2‐arylprop‐1‐enyl)‐2H‐furo[3,2‐c]pyran‐3,4‐diones. The structure of all compounds was established by elemental analysis, IR, NMR, and mass spectra. J. Heterocyclic Chem., 2011.  相似文献   

4.
The stereoselective total synthesis of an antiproliferative and antifungal α‐pyrone natural product (6S)‐5,6‐dihydro‐6‐[(2R)‐2‐hydroxy‐6‐phenylhexyl]‐2H‐pyran‐2‐one is described. The key steps involved are the Prins cyclization, Mitsunobu reaction, and ring‐closing metathesis reaction.  相似文献   

5.
3‐(Bromoacetyl)‐4‐hydroxy‐6‐methyl‐2H‐pyran‐2‐one was synthesized by the reaction of dehydroacetic acid (DHAA) with bromine in glacial acetic acid. Novel heterocyclic products were synthesized from the reaction of bromo‐DHAA with alkanediamines, phenylhydrazines, ortho‐phenylenediamines, and ortho‐aminobenzenethiol. The obtained new products 3‐(2‐N‐substituted‐acetyl)‐4‐hydroxy‐6‐methyl‐2H‐pyran‐2‐ones, 4‐hydroxy‐3‐[1‐hydroxy‐2‐(2‐phenylhydrazinyl)vinyl]‐6‐methyl‐2H‐pyran‐2‐one, 1‐(2,4‐dinitrophenyl)‐7‐methyl‐2,3‐dihydro‐1H‐pyrano[4,3‐c]pyridazine‐4,5‐dione, 3‐(3,4‐dihydroquinoxalin‐2‐yl)‐4‐hydroxy‐6‐methyl‐2H‐pyran‐2‐one/3‐(3,4‐dihydroquinoxalin‐2‐yl)‐6‐methyl‐2H‐pyran‐2,4(3H)‐dione, 6‐methyl‐3‐(3,4‐dihydroquinoxalin‐2‐yl)‐2H‐pyran‐2,4(3H)‐dione, and (E)‐3‐(2H‐benzo[b][1,4]thiazin‐3(4H)‐ylidene)‐6‐methyl‐2H‐pyran‐2,4(3H)‐dione were fully characterized by IR, 1H and 13C NMR, and mass spectra. J. Heterocyclic Chem., 2011.  相似文献   

6.
A novel Cu(OAc)2·H2O catalyzed coupling reaction of N‐substituted‐2‐iodobenzamides with malononitrile to afford N‐substituted‐3‐amino‐4‐cyano‐isoquinoline‐1(2H)‐ones is described. The reaction proceeded in DMSO at 90°C for 5 h in nitrogen without external ligands.  相似文献   

7.
N‐Aryl‐substituted 2‐nitrosoanilines (=2‐nitrosobenzenamines) 1 , readily available by nucleophilic substitution of the ortho‐H‐atom in nitroarenes with arenamines, react with 2‐substituted acetic acid esters in the presence of a weak base giving 1‐arylquinoxalin‐2(1H)‐ones (Scheme 2). This cyclocondensation allows for the synthesis of compounds 2 – 4 , unsubstituted at C(3) or substituted by alkyl, aryl, ester, amide, and keto groups, in good to excellent yields (Tables 14).  相似文献   

8.
A mild and efficient synthesis of N‐substituted‐3‐aryl‐3‐(4‐hydroxy‐6‐methyl‐2‐oxo‐2H‐pyran‐3‐yl)propanamides via four‐component reaction of an aldehyde, amine, Meldrum's acid, and 4‐hydroxy‐6‐methyl‐2H‐pyran‐2‐one in the presence of benzyltriethylammonium chloride (TEBAC) in aqueous medium is described. This method has the advantages of accessible starting materials, good yields, mild reaction conditions, and begin environmentally friendly.  相似文献   

9.
A sequential one‐pot four‐component reaction for the efficient synthesis of novel 2′‐aminospiro[11H‐indeno[1,2‐b]quinoxaline‐11,4′‐[4H]pyran] derivatives 5 in the presence of AcONH4 as a neutral, inexpensive, and dually activating catalyst is described (Scheme 1). The syntheses are achieved by reacting ninhydrin ( 1 ) with benzene‐1,2‐diamines 2 to give indenoquinoxalines, which are trapped in situ by malono derivatives 2 and various α‐methylenecarbonyl compounds 4 through cyclization, providing the multifunctionalized 2′‐aminospiro[11H‐indeno[1,2‐b]quinoxaline‐11,4′‐[4H]pyran] analogs 5 . This chemistry provides an efficient and promising synthetic way of proceeding for the diversity‐oriented construction of the spiro[indenoquinoxalino‐pyran] skeleton.  相似文献   

10.
A novel straightforward synthesis of 3‐(1H‐tetrazol‐5‐yl)coumarins (=3‐(1H‐tetrazol‐5‐yl)‐2H‐1‐benzopyran‐2‐ones) 6 via domino Knoevenagel condensation, Pinner reaction, and 1,3‐dipolar cycloaddition of substituted salicylaldehydes (=2‐hydroxybenzaldehydes), malononitrile (propanedinitrile), and sodium azide in H2O is reported (Scheme 1 and Table 2). This general protocol provides a wide variety of 3‐(1H‐tetrazol‐5‐yl)coumarins in good yields under mild reaction conditions.  相似文献   

11.
An efficient one‐pot synthesis of 3‐[(4,5‐dihydro‐1H‐pyrrol‐3‐yl)carbonyl]‐2H‐chromen‐2‐one (=3‐[(4,5‐dihydro‐1H‐pyrrol‐3yl)carbonyl]‐2H‐1‐benzopyran‐2‐one) derivatives 4 by a four‐component reaction of a salicylaldehyde 1 , 4‐hydroxy‐6‐methyl‐2H‐pyran‐2‐one, a benzylamine 2 , and a diaroylacetylene (=1,4‐diarylbut‐2‐yne‐1,4‐dione) 3 in EtOH is reported. This new protocol has the advantages of high yields (Table), and convenient operation. The structures of these coumarin (=2H‐1‐benzopyran‐2‐one) derivatives, which are important compounds in organic chemistry, were confirmed spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this reaction is proposed (Scheme 2).  相似文献   

12.
The one‐step cyclocondensation of substituted isoflavones (=3‐phenyl‐4H‐1‐benzopyran‐4‐ones) with cyanoacetohydrazide in the presence of KOH afforded a mixture of 1‐amino‐5,6‐diaryl‐3‐cyano‐1H‐2‐pyridin‐2‐ones and 6,7‐diaryl‐4‐cyano‐3‐hydroxy‐1H‐[1,2]diazepines.  相似文献   

13.
2‐Aryl‐2,3‐dihydro‐4H‐pyran‐4‐ones were prepared in one step by cyclocondensation of 1,3‐diketone dianions with aldehydes. The use of HCl (10%) for the aqueous workup proved to be very important to avoid elimination reactions of the 5‐aryl‐5‐hydroxy 1,3‐diones formed as intermediates. The TiCl4‐mediated cyclization of a 2‐aryl‐2,3‐dihydro‐4H‐pyran‐4‐one with 1,3‐silyloxybuta‐1,3‐diene resulted in cleavage of the pyranone moiety and formation of a highly functionalized benzene derivative.  相似文献   

14.
A simple and highly efficient stereoselective total synthesis of the 6‐alkylated pyranones (6R)‐6‐[(1E,4R,6R)‐4,6‐dihydroxy‐10‐phenyldec‐1‐en‐1‐yl]‐5,6‐dihydro‐2H‐pyran‐2‐one ( 1 ) and (6S)‐5,6‐dihydro‐6‐[(2R)‐2‐hydroxy‐6‐phenylhexyl]‐2H‐pyran‐2‐one ( 2 ) was developed using Crimmins' aldol reaction, SmI2 reduction, GrubbsII‐catalyzed olefin cross‐metathesis, and Still's modified Horner? Wadsworth? Emmons reaction.  相似文献   

15.
The proline‐catalyzed addition of various aliphatic aldehydes to sterically hindered 2‐aryl‐substituted 3H‐indol‐3‐ones affords 2,2‐disubstituted 2,3‐dihydro‐1H‐indol‐3‐one derivatives with excellent enantioselectivities. In addition, the synthesis of a chiral derivative, (S)‐2‐(2‐bromophenyl)‐2,3‐dihydro‐2‐(2‐hydroxyethyl)‐1H‐indol‐3‐one, which can be used as an intermediate for the preparation of the natural product hinckdentine A was accomplished with a high level of enantioselectivity.  相似文献   

16.
A simple and efficient synthesis of novel 2‐heteroaryl‐substituted 1H‐indole‐2‐carboxylates and γ‐carbolines, compounds 1 – 3 , from methyl 2‐(2‐methoxy‐2‐oxoethyl)‐1‐methyl‐1H‐indole‐3‐carboxylate ( 4 ) by the enaminone methodology is presented.  相似文献   

17.
Synthesis of some benzoheterocyclic compounds like substituted benzofurans, 4‐methyl‐2H‐chromenes and 3,4‐dihydro‐2H‐benzo[b]oxepin‐5‐ones from 2‐hydroxyacetophenone via base induced cyclization and ring‐closing metathesis (RCM) is described.  相似文献   

18.
Alkyl 2‐[2‐ethoxycarbonyl‐2‐(2‐pyridinyl)ethenyl]amino‐3‐dimethylaminopropenoates 3 and 4 were transformed with C‐and N‐nucleophiles into β‐heteroaryl‐α,β‐didehydro‐α‐amino acid derivatives 13 ‐ 16 , substituted 3‐amino‐4H‐quinolizin‐4‐one 17, 2H,5H‐benzo[b]pyran‐2,5‐dione 18 and 19 , 2H,5H‐pyrano[4,3‐b]pyran‐2,5‐dione 20 , 2H,5H‐pyrano[3,2‐c]benzo[b]pyran‐2,5‐dione 21 , 2H‐1‐benzopyran‐2‐one 22 and 24 , pyrido[l,2‐a]pyrimidin‐4‐one 31–34 and 39 derivatives, and N‐heteroaryl‐1H‐imidazole‐4‐carboxylates 37 and 38 .  相似文献   

19.
In this paper, we report a new synthesis route to 4H‐pyran derivatives and a plausible reaction mechanism. The interaction of 5‐acetyl‐2‐amino‐6‐methyl‐4‐phenyl‐4H‐pyran‐3‐carbonitrile with different active methylene reagents gives rise to the cleavage and subsequent recyclization of the pyran ring to afford the corresponding 4H‐pyran derivatives.  相似文献   

20.
A facile, efficient and eco‐friendly catalytic protocol was developed for the synthesis of medicinally important pyran‐annulated heterocycles via multicomponent reaction (MCR). Cyclocondensation of differently substituted aromatic aldehydes, malononitrile/ethyl cyanoacetate and various β‐dicarbonyl compounds in the presence of Ag3[PMo12O40]?nH2O as heterogeneous catalyst, in EtOH–H2O, afforded diverse pyran‐fused chromene analogues. The merits observed for this approach were it being conducted via MCR, using commercially available or easily accessible starting materials in the presence of a green and easily separable heterogeneous and reusable catalyst, and affording high yields of desired products in very short reaction times with high purity in one‐pot fashion, thus providing a superior alternative approach for the synthesis of pyran‐annulated heterocycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号