首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ag/MnO2/GO nanocomposites were synthesized via the method of gas/liquid interface based on silver mirror reaction, and a non‐enzymatic H2O2 sensor was fabricated through immobilizing Ag/MnO2/GO nanocomposites on GCE. The composition and morphology of the nanocomposites were studied by energy‐dispersive X‐ray spectroscopy (EDS), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Electrochemical investigation indicated that it exhibited a favorable performance for the H2O2 detection. Its linear detection range was from 3 μM to 7 mM with a correlation coefficient of 0.9960; the sensitivity was 105.40 μA mM?1 cm?2 and the detection limit was estimated to be 0.7 μM at a signal‐to‐noise ratio of 3.  相似文献   

2.
Glucose concentration monitoring is important for the prevention, diagnosis and treatment of diabetes. In this work, a composite material of AgNPs/MOF‐74(Ni) was prepared for electrochemical determination of glucose. AgNPs/MOF‐74(Ni) was characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X‐ray photoelectron spectroscopy (XPS). The electrochemical properties of the glassy carbon electrodes modified with the AgNPs/MOF‐74(Ni) composites were characterized by cyclic voltammetry (CV) and current‐time curve (I‐t curve) with three electrode system. The determination of glucose with the electrode modified by AgNPs/MOF‐74(Ni) has a linear range of 0.01~4 mM with the correlation coefficient (R2) of 0.994. The detection limit is 4.7 μM (S/N=3) and the sensitivity is 1.29 mA ? mM?1 ? cm?2. In addition, this sensing system possesses reasonable reproducibility and stability. The good performance of electrochemical determination for glucose is attributed to the concerted effect of silver nanoparticles and MOF‐74(Ni) on the promotion of glucose oxidation  相似文献   

3.
Homogeneously dispersed silver nanoparticles (AgNPs) were successfully decorated onto the surface of TiO2 nanotube arrays (TNTA) by means of an in situ photoreduction method. TNTA films as supports exhibit excellent properties to prevent agglomeration of AgNPs, and they also avoid using polymer ligands, which is deleterious to enhancing the properties of the fabricated NPs. The silver particle size and its content could be controlled just by changing the immersion time. Detailed SEM and TEM analyses combined with energy‐dispersive X‐ray spectroscopy analyses with different immersion times (5, 10, 30, 60 min) have revealed the variation tendency. The prepared Ag/TNTA composite films were also characterized by XRD, X‐ray photoelectron spectroscopy, and high‐resolution TEM. The UV/Vis diffuse reflectance spectra displayed a redshift of the absorption peak with the growth of AgNPs. The photocurrent response and the photoelectrocatalytic degradation of methyl orange (MO) were used to evaluate the photoelectrochemical properties of the fabricated samples. The results showed that the photocurrent response and photoelectrocatalytic activity largely depended on the loaded Ag particle size and content. TNTA films with a diameter of 17.92 nm and silver content of 1.15 at % showed the highest photocurrent response and degradation rate of MO. The enhanced properties could be attributed to the synergistic effect between AgNPs and TiO2. To make good use of this effect, particle size and silver content should be well controlled to develop the electron charge and discharge process during the photoelectrical process. Neither smaller nor larger AgNPs caused decreased photoelectrical properties.  相似文献   

4.
In this study, the bark of an important medicinal plant, Indigofera aspalathoides is utilized as a bioreductant for the synthesis of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs). The formation of nanoparticles was monitored, and the reaction parameters were optimized by UV–Vis spectroscopy. The attachment of biocomponents as stabilizer was proved employing Fourier‐transform infrared (FT‐IR) studies. Through transmission electron microscopy (TEM), the morphology was found to be predominantly spherical and a mixture of triangle and hexagon in the case of AgNPs and AuNPs, respectively. The crystallite size of AgNPs and AuNPs was affirmed through X‐ray diffraction (XRD) studies using Sherrer formula as 22.03 and 47.70 nm, respectively. DPPH method was adopted to analyse the free‐radical quenching ability, and the AgNPs, AuNPs and extract showed inhibition of 76%, 89% and 59% at a concentration of 200 μg ml?1, and the corresponding IC50 values were 86.49, 55.20 and 149.19 μg ml?1. The binding of nanoparticles to calf‐thymus DNA (CT‐DNA) was through groove and the high binding constants (8.49 × 106 M?1 and 2.34 × 107 M?1 for AgNPs and AuNPs) point out the potential of these nanoparticles as curative drugs. The MTT assay showed that AgNPs were 100% toxic, and the low IC50 value suggests that this can be used in the medicinal field as a safe drug.  相似文献   

5.
We studied sensor application of a graphene oxide and hematite (α‐Fe2O3/GO) composite electrode well‐characterized by the SEM and XRD. Through differential pulse voltammetry (DPV), oxidation of dexamethasone sodium phosphate (DSP) was studied at the surface of a glassy carbon electrode (GCE) modified with graphene oxide nanosheets (GO) and the α‐Fe2O3/GO composite. The values of the transfer coefficient (α) and the diffusion coefficient (D) of DSP were 0.5961 and 4.71×10?5 cm2 s?1 respectively. In the linear range of 0.1–50 μM, the detection limit (DL) was 0.076 μM. In the second step, a GCE was modified with α‐Fe2O3/GO composite and the DSP measurement step was repeated to analyzed and compare the effects of hematite nanoparticles present on graphene oxide surfaces. According to the results, α and D were 0.52 and 2.406×10?4 cm2 s?1 respectively and the DL was 0.046 μM in the linear range of 0.1–10.0 μM. The sensor is simple, inexpensive and uses blood serum.  相似文献   

6.
The study presents a novel paracetamol (PA) sensor based on Pd nanoparticles (PdNPs) deposited on carboxylated graphene oxide (GO?COOH) and nafion (Nf) modified glassy carbon electrode (GCE). The morphologies of the as prepared composites were characterized using high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), and fourier transform infrared spectroscopy (FTIR). The experimental results demonstrated that Nf/GO?COOPd displayed excellent electrocatalytic response to the oxidation PA. The linear range was 0.04–800 μM for PA with limit of detection of 0.012 μM and excellent sensitivity of 232.89 μA mM?1 cm?2. By considering the excellent performance of Nf/GO?COOPd composite such as wider linear range, lower detection, better selectivity, repeatability, reproducibility, and storage stability, the prepared composite, especially GO?COOH support, with satisfactory electrocatalytic properties was a promising material for the modification of electrode material in electrochemical sensor and biosensor field.  相似文献   

7.
In this study, we present a novel approach to prepare of a colorimetric chemical sensor for H2O2 and a glucose biosensor basing on the use of peroxidase-like activity of silver nanoparticles decorated on reduced graphene oxide sheets (AgNPs@rGO) nanocomposite. Herein, AgNPs@rGO nanocomposite was synthesized by a one-step hydrothermal reducing method and its physico-chemical properties were characterized by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Ultraviolet–visible spectroscopy (UV–Vis), Fourier-Transform Infrared spectroscopy (FT-IR) and Energy Dispersive X-ray spectroscopy (EDX). Obtained evaluation results shown that the synthesized AgNPs/rGO nanocomposite has performed an efficient peroxidase-like activity for the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMBred) by H2O2, leading to the oxidized form (TMBox) which presents a typical blue color (maximum of absorbance at λmax = 655 nm). A colorimetric assay for H2O2 detection was designed and fabricated with a limit of detection of 20 μM. Moreover, we have used of AgNPs/rGO nanocomposite combining with glucose oxidase (GOx) to develop of a colorimetric glucose biosensor with a low limit of detection of 40 μM and a linear dynamic range from 125 μM to 1 mM. This glucose test was applied to the detection of glucose in human serum samples.  相似文献   

8.
Highly flexible graphene/poly(methylene blue)/AgNPs composite paper was successfully prepared for amperometric biosensing of NADH. For this purpose, a dispersion including graphene oxide (GO), methylene blue (MB) and silver nanoparticles (AgNPs) was prepared and GO/MB/AgNPs paper was acquired by vacuum‐filtration of this dispersion through a suitable membrane. After peeling it off from membrane, it was transformed to rGO/MB/AgNPs paper by performing reduction with hydriodic acid. In a three‐electrode cell, which is containing 0.1 M phosphate buffer solution (pH: 9.0), rGO/MB/AgNPs paper was used as working electrode and rGO/poly(MB)/AgNPs composite paper was generated by surface‐confined electropolymerization of MB using successive cyclic voltammetry approach in a suitable potential window. Characterization of this composite paper was carried out by using scanning electron microscopy, scanning tunneling microscopy, X‐ray photoelectron spectroscopy, powder X‐ray diffraction spectroscopy, Raman spectroscopy, four‐point probe conductivity measurement and cyclic voltammetry techniques. Flexible rGO/poly(MB)/AgNPs composite paper has demonstrated high sensitivity, wide linear range and low detection limit for amperometric quantification of NADH.  相似文献   

9.
Stable silver nanoparticles were synthesized with the aid of a novel, non-toxic, eco-friendly biological material namely, green pepper extract. The aqueous pepper extract was used for reducing silver nitrate. The synthesized silver nanoparticles were analyzed with transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). TEM image shows the formation of silver nanoparticles with average particle size of 20 nm which agrees well with the XRD data. The main advantage of using pepper extract as a stabilizing agent is that it provides long-term stability for nanoparticles by preventing particles agglomeration. To investigate the electrocatalytic efficiency of silver nanoparticles, silver nanoparticles modified carbon-paste electrode (AgNPs–CPE) displayed excellent electrochemical catalytic activities towards hydrogen peroxide (H2O2) and hydrogen evolution reaction (HER). The reduction overpotential of H2O2 was decreased significantly compared with those obtained at the bare CPE. An abrupt increase of the cathodic current for HER was observed at modified electrode. Also, the antibacterial activity of silver nanoparticle was performed using Escherichia coli and Salmonellae. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods.  相似文献   

10.
The nanocomposites of Ag nanoparticles supported on Cu2O were prepared and used for fabricating a novel nonenzymatic H2O2 sensor. The morphology and composition of the nanocomposites were characterized using the scanning electron microscope (SEM), transmission electron microscope (TEM), energy‐dispersive X‐ray spectrum (EDX) and X‐ray diffraction spectrum (XRD). The electrochemical investigations indicate that the sensor possesses an excellent performance toward H2O2. The linear range is estimated to be from 2.0 μM to 13.0 mM with a sensitivity of 88.9 μA mM?1 cm?2, a response time of 3 s and a low detection limit of 0.7 μM at a signal‐to‐noise ratio of 3. Additionally, the sensor exhibits good anti‐interference.  相似文献   

11.
《中国化学》2017,35(7):1098-1108
In this study, chemical reduced graphene‐silver nanoparticles hybrid (AgNPs @CR‐GO ) with close‐packed AgNPs structure was used as a conductive matrix to adsorb enzyme and facilitate the electron transfer between immobilized enzyme and electrode. A facile route to prepare AgNPs @CR‐GO was designed involving in β ‐cyclodextrin (β ‐CD ) as reducing and stabilizing agent. The morphologies of AgNPs were regulated and controlled by various experimental factors. To fabricate the bioelectrode, AgNPs @CR‐GO was modified on glassy carbon electrode followed by immobilization of glucose oxidase (GOx ) or laccase. It was demonstrated by electrochemical testing that the electrode with close‐packed AgNPs provided high GOx loading (Γ =4.80 × 10−10 mol•cm−2) and fast electron transfer rate (k s=5.76 s−1). By employing GOx based‐electrode as anode and laccase based‐electrode as cathode, the assembled enzymatic biofuel cell exhibited a maximum power density of 77.437 μW •cm−2 and an open‐circuit voltage of 0.705 V.  相似文献   

12.
This study aims at developing a new eco-friendly process for the synthesis of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) using purified URAK. URAK is a fibrinolytic enzyme produced by Bacillus cereus NK1. The enzyme was purified and used for the synthesis of AuNPs and AgNPs. The enzyme produced AgNPs when incubated with 1 mM AgNO3 for 24 h and AuNPs when incubated with 1 mM HAuCl4 for 60 h. But when NaOH was added, the synthesis was rapid and occurred within 5 min for AgNPs and 12 h for AuNPs. The synthesized nanoparticles were characterized by a peak at 440 nm and 550 nm in the UV-visible spectrum. TEM analysis showed that AgNPs of the size 60 nm and AuNPs of size 20 nm were synthesized. XRD confirmed the crystalline nature of the nanoparticles and AFM showed the morphology of the nanoparticle to be spherical. FT-IR showed that protein was responsible for the synthesis of the nanoparticles. This process is highly simple, versatile and produces AgNPs and AuNPs in environmental friendly manner. Moreover, the synthesized nanoparticles were found to contain immobilized enzyme. Also, URAK was tested on RAW 264.7 macrophage cell line and was found to be non-cytotoxic until 100 μg/ml.  相似文献   

13.
An eco-friendly chemical reduction method was successfully used for the preparation of chitosan (CTS) composite films loaded with silver nanoparticles (AgNPs) by self assembly method using poly(ethylene glycol) as both reducing and stabilizing agent. UV-Vis spectra of the prepared chitosan loaded silver nanoparticles (CTSLAg) films reveal that full reduction of silver ions to silver nanoparticles takes place at 90 °C. The effect of reaction conditions on the silver nanoparticles formation was investigated using UV-Vis spectrophotometer. The morphology of the films was tested by scanning electron microscopy (SEM). The DSC curves showed that the CTSLAg film had a favorable compatibility and heat stability. AgNPs were confirmed by XRD and UV-Vis spectroscopy. The TEM findings revealed that the silver nanoparticles synthesized were spherical in shape with uniform dispersal, and by increasing CTS:PEG ratio larger silver nanoparticles could be obtained. The results of antibacterial study reveal that the prepared nanocomposite films exhibited potential inhibition.  相似文献   

14.

In recent years, progress of biological synthesis of nanoparticles is inevitable due to its important applications. In this research, a new and simple method for the synthesis of AgNPs from plant extracts is presented. The extract from shoots of the plant Tribulus terrestris L. was mixed with AgNO3 with the aim of biologically synthesizing AgNPs. The biomolecules existing in the extract were accountable for the fast reduction of silver ions (Ag+) to AgNPs. Characterization of biosynthesized AgNPs was performed by UV–Vis, TEM, DLS, and XRD. The AgNPs exhibit a strong peak at 434 nm, and sphere-shaped AgNPs were found to be ~?25 nm. The biosynthesized silver nanoparticles have demonstrated high antibacterial effect against pathogenic bacteria (i.e., Staphylococcus aureus, Escherichia coli, Bacillus subtilis and Pseudomonas aeruginosa). In addition, the in vitro cytotoxicity effect of biosynthesized silver nanoparticles was also investigated and was detected to be up to 15.62 μg/mL in the treated Neuro2A cells. The plant-mediated biosynthesis of AgNPs has comparatively rapid, eco-friendly, inexpensive and wide-ranging application in modern medicine and the food industry.

  相似文献   

15.
Due to environmentally friendly and cost- effective issues, biological methods for silver nanoparticles (AgNPs) synthesis are advantageous over chemical and physical ones. In this study, AgNPs synthesized using Lavandula stoechas extract as a reductant and its antioxidant capacity, antibacterial property and cytotoxicity effect were investigated. The phyto-synthesized AgNPs were characterized using various analyses such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD) as well as Fourier transform infrared (FT-IR). The prepared nanoparticles were spherical on shape with the size about 20–50 nm. Antibacterial studies through agar disk diffusion method confirmed the antibacterial potential of phyto-synthesized AgNPs toward two clinical Staphylococus aureus and Pseudomonas aeruginosa bacteria, although MTT assay demonstrated that S. aureus (MIC = 125 μg/ml) was more susceptible to AgNPs than P. aeruginosa (MIC = 250 μg/ml). Moreover, the cytotoxicity assay of phyto-synthezied AgNPs showed a low cytotoxic effect on RAW264 cell line at 62.5 μg/ml as an effective concentration. Also the considerable antioxidant capacity of the AgNPs confirmed through DPPH assay. Great antibacterial and antioxidant properties along with biocompatibility make the suggested phyto-synthesized AgNPs a great candidate for different biomedical applications including wound healing.  相似文献   

16.
Biosynthesis of silver nanoparticles (AgNPs) was achieved by a novel, simple green chemistry procedure using citrus sinensis peel extract as a reducing and a capping agent. The effect of temperature on the synthesis of silver nanoparticles was carried out at room temperature (25°C) and 60°C. The successful formation of silver nanoparticles has been confirmed by UV-vis, FTIR, XRD, EDAX, FESEM and TEM analysis and their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa (gram-negative), and Staphylococcus aureus (gram-positive) has been studied. The results suggest that the synthesized AgNPs act as an effective antibacterial agent.  相似文献   

17.
Ag@iron oxide nanocomposite powders were synthesized via a two‐step chemical method. Characterization by UV‐Vis, XRD, SEM‐EDX and TEM revealed they are composed of nanosized crystalline silver particles in strict contact with amorphous iron oxide(s). The electrochemical behavior of the synthesized Ag@iron oxide composite was investigated by cyclic voltammetry. Compared with the single phase‐modified electrodes, the Ag@iron oxide/SPCE electrode exhibits an enhanced cathodic current in response to the target analyte, due to a synergistic effect between Ag crystallites and amorphous iron oxide nanoparticles. An amperometric sensor for detection of nitrate based on Ag@iron oxide modified screen‐printed electrode (Ag@iron oxide/SPCE) has been fabricated, showing a good sensitivity (663 µA mM?1 cm?2) and a detection limit of 30 µM.  相似文献   

18.
《Electroanalysis》2017,29(6):1618-1625
An electrochemical sensor was developed based on gold nanoparticles incorporated in mesoporous MFI zeolite for the determination of purine bases. Au nanoparticles (AuNPs) were incorporated into the mesoporous MFI zeolite (AuNPs/m‐MFI) by post‐grafting reaction. The composite materials were characterized by transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS) and electrochemical methods. Au nanoparticles with a size of 5‐20 nm are uniformly dispersed in the pores of mesoporous MFI zeolite. And the morphology of MFI zeolite can be perfectly kept after pore expansion and Au nanoparticles incorporation. The electrocatalytic oxidation of purine bases (guanine and adenine in DNA) is investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The surface‐confined Au nanoparticles provide the good catalytic activity for oxidation of purine bases. The simultaneous detection of guanine and adenine can be achieved at AuNPs/m‐MFI composites modified glassy carbon electrode (GCE). The electrochemical sensor based on AuNPs/m‐MFI exhibits wide linear range of 0.5–500 μM and 0.8–500 μM with detection limit of 0.25 and 0.29 μM for guanine and adenine, respectively. Moreover, the electrochemical sensor is applied to evaluation of guanine and adenine in herring sperm DNA samples with satisfactory results.  相似文献   

19.
利用254 nm紫外光照射山茱萸水提液在室温下制备了纳米银,并通过UV-Vis光谱检测其在410 nm附近的等离子体共振峰;研究了溶液p H值、料液比以及反应时间对还原反应的影响,确定了纳米银的最优合成条件:p H=7. 0,料液比1∶1,反应时间1 h.通过X射线晶体衍射、透射电子显微镜和激光粒度仪对纳米银的晶体结构、粒径、表面性质和形貌等进行表征发现,在最优反应条件下制得的纳米银为面心立方结构,呈近球形,平均粒径(55. 4±0. 9) nm,分散均匀,表面带负电(-10. 2 m V),具有较高的稳定性.生物活性研究结果表明,制得的纳米银具有良好的抗氧化、抗菌及抗癌活性.当纳米银浓度为62. 5μg/m L时,对DPPH自由基的清除率为70. 0%;对S. aureus和E. coli最低抑菌浓度分别为3. 9和7. 8μg/m L;对结直肠癌细胞HCT116和SW620的IC50值分别为23. 1和35. 1μg/m L.  相似文献   

20.
In the present work, silver nanoparticles (AgNPs) were in situ generated in cellulose matrix using leaf extract of Azadirachta indica as a reducing agent. The cellulose/AgNP composite films prepared were characterized by FTIR, X-ray diffraction (XRD), scanning electron microscope, and antibacterial tests. The infrared spectra indicated the association of organic materials with silver nanoparticles to serve as capping agents. Scanning electron micrographs showed that synthesized silver nanoparticles were nearly uniform and spherical in shape with diameter in the range of 61–110?nm. XRD confirmed the formation of AgNPs and Ag–O nanoparticles. The nanocomposite films showed good antibacterial activity against Escherichia coli bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号