首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The magnetic properties of very thin ferromagnetic Fe films (1–10 atomic layers) in contact with nonmagnetic amorphous metals are investigated. Apart from the demagnetization energy, which supports a magnetization in the plane of the film, an energy of magnetic anisotropy occurs in the interlayer, which has the tendency to orient the magnetization perpendicular to the surface. The anomalous Hall effect of the ferromagnetic films is used to investigate their magnetic properties. From the measurements, we get the applied magnetic field Bs, which is necessary to orient the magnetization perpendicular to the film surface. In addition to a constant term, Bs is proportional to 1/d, which is typical of surface effects and yields the energy of the interface anisotropy. The value of this energy is strongly dependent on the nonmagnetic metal and is smaller for the system Pb/Fe than for Sn/Fe. Furthermore, the experimental results show no drastic reduction of the atomic magnetic moment in the surface layer.  相似文献   

2.
We discuss the magnetostatic energy of checkerboard domain structures in ultrathin magnetic films (of a few monolayer thickness) and in an atomic monolayer using simple magnetostatic considerations where the easy direction of magnetization is perpendicular to the film. The checkerboard domain size, D, the domain-wall width, ω, the ratio f of the uniaxial surface anisotropy, Ks, to the dipolar energy and the binding energy, (BE), have been calculated numerically with the variational parameter δ and the number of atomic layers, nl, as parameters.  相似文献   

3.
利用X射线磁性圆二色技术对Co0.9Fe0.1薄膜面内元素分辨的磁各向异性进行了研究,通过剩磁模式测量不同磁化方向的样品组分原子单位空穴磁矩的变化,发现除了在生长的磁诱导方向存在易磁化轴外,在与该轴垂直的方向还存在一个类似易轴的软磁化轴;面内的两个难磁化轴与易磁化轴取向大约成66°夹角,从而构成了面内双轴磁各向异性;对不同组分元素,其单位空穴磁矩随磁化方向的变化趋势基本相同,不同磁化方向Fe原子单位空穴的磁矩值约为Co的对应值的87%,反映了Fe原子和Co原子之间存在着强烈的铁磁性耦合. 关键词: 磁各向异性 X射线磁性圆二色 铁磁耦合 CoFe合金薄膜  相似文献   

4.
The spin-wave excitations of ultrathin iron films (1 to 5 nm) on sapphire substrates have been studied by inelastic light scattering using Brillouin spectroscopy. The room temperature magnetization J, magnetic anisotropy field Ban, and the g-factor have been determined by fitting the measured ω-B results for surface spin waves to the related Damon-Eshbach theory. For thicknesses below 4 nm the film magnetization Jf decreases linearly with film thickness and is found substantially smaller than Jf values determined by static magnetization measurements. Equivalent reductions in Jf, however, were also obtained in light scattering studies of ultrathin Fe films on GaAs substrates reported previously in the literature [2].  相似文献   

5.
Novel icosahedral quasicrystals, in which Fe atoms possess a magnetic moment, have been found in Al70?x BxPd30?y Fey compounds with 5<x<10 and 10<y<20. The compounds have ferromagnetic properties, and their Curie temperature ranges between 280 and 340 K, the saturation magnetization σ s(5 K)≈7.5 emu/g. It follows from Mössbauer spectra that only a fraction of Fe atoms (12 to 15%) are magnetically ordered at 4.2 K, and the mean saturation field 〈H hf〉=96 kOe. The isomer shift values confirm that the atomic volume of magnetic Fe sites is larger than that of nonmagnetic Fe sites. The magnetic properties of these quasicrystals can be interpreted in terms of large magnetic clusters with a size of 185 to 290 Å. This size correspond to about 4×104 “unit cells,” hence the magnetic state can be described in terms of bulk parameters. The localized magnetic moment of Fe atoms is tentatively ascribed to bonding between Fe and B, similarly to that in the amorphous Fe~50B~50 alloy.  相似文献   

6.
李晓其  徐晓光  王圣  吴勇  张德林  苗军  姜勇 《中国物理 B》2012,21(10):107307-107307
Microstructures and magnetic properties of Ta/Pt/Co 2 FeAl(CFA)/MgO multilayers are studied to understand perpendicular magnetic anisotropy(PMA) of half-metallic full-Heusler alloy films.PMA is realized in a 2.5-nm CFA film with B2-ordered structure observed by a high resolution transmission electron microscope.It is demonstrated that a high quality interface between the ferromagnetic layer and oxide layer is not essential for PMA.The conversions between in-plane anisotropy and PMA are investigated to study the dependence of magnetic moment on temperature.At the intersection points,the decreasing slope of the saturation magnetization(M s) changes because of the conversions.The dependence of M s on the annealing temperature and MgO thickness is also studied.  相似文献   

7.
Microstructure, magnetic and optical properties of polycrystalline Fe-doped ZnO films fabricated by cosputtering with different Fe atomic fractions (xFe) have been examined systematically. Fe addition could affect the growth of ZnO grains and surface morphology of the films. As xFe is larger than 7.0%, ZnFe2O4 grains appear in the films. All the films are ferromagnetic. The ferromagnetism comes from the ferromagnetic interaction activated by defects between the Fe ions that replace Zn ions. The average moment per Fe ion reaches a maximum value of 1.61 μB at xFe = 4.8%. With further increase in xFe, the average moment per Fe ion decreases because the antiferromagnetic energy is lower than the ferromagnetic one due to the reduced distance between the adjacent Fe ions. The optical band gap value decreases from 3.245 to 3.010 eV as xFe increases from 0% to 10%. Photoluminescence spectra analyses indicate that many defects that affect the optical and magnetic properties exist in the films.  相似文献   

8.
The effects of oxygen pressure during deposition on microstructure and magnetic properties of strontium hexaferrite (SrFe12O19) films grown on Si (100) substrate with Pt (111) underlayer by pulsed laser deposition have been investigated. X-ray diffraction pattern confirms that the films have c-axis perpendicular orientation. The c-axis dispersion (Δθ50) increases and c-axis lattice parameter decreases with increasing oxygen pressure. The films have hexagonal shape grains with diameter of 150-250 nm as determined by atomic force microscopy. The coercivities in perpendicular direction are higher than those in in-plane direction, which shows the films have perpendicular magnetic anisotropy. The saturation magnetization and anisotropy field for the film deposited in oxygen pressure of 0.13 mbar are comparable to those of the bulk strontium hexaferrite. Higher oxygen pressure leads to the films having higher coercivity and squareness. The coercivity in perpendicular and in-plane directions of the film deposited in oxygen pressure of 0.13 mbar are 2520 Oe and 870 Oe, respectively.  相似文献   

9.
Ultrathin films, bcc Fe(001) on Ag(001), fcc Fe(001) on Cu(001) and Fe/Ni(001) bilayers on Ag, were grown by molecular beam epitaxy. A wide range of surface science tools were employed to establish the quality of epitaxial growth. Ferromagnetic resonance and Brillouin light scattering were used to extract the magnetic properties. Emphasis was placed on the study of magnetic anisotropies. Large uniaxial anisotropies with easy axis perpendicular to the film surface were observed in all ultrathin structures studied. These anisotropies were particularly strong in fcc Fe and bcc Fe films. In sufficiently thin samples the saturation magnetization was oriented perpendicularly to the film surface in the absence of an applied field. It has been demonstrated that in bcc Fe films the uniaxial perpendicular anisotropy originates at the film interfaces. In situ measurements indentified the strength of the uniaxial perpendicular anisotropy constant at the Fe/vacuum, Fe/Ag and Fe/Au interfaces asK us = 0.96, 0.63, and 0.3 ergs/cm2 respectively. The surface anisotropies deduced for [bulk Fe/noble metal] interfaces are in good agreement with the values obtained from ultrathin films. Hence the perpendicular surface ansiotropies originate in the broken symmetry at abrupt interfaces. An observed decrease in the cubic anisotropy in bcc Fe ultrathin films has been explained by the presence of a weak 4th order in-plane surface anisotropy,K 1S=0.012 ergs/cm2. Fe/Ni bilayers were also investigated. Ni grew in the pure bcc structure for the first 3–6 ML and then transformed to a new structure which exhibited unique magnetic properties. Transformed ultrathin bilayers possessed large inplane 4th order anisotropies far surpassing those observed in bulk Fe and Ni. The large 4th order anisotropies originate in crystallographic defects formed during the Ni lattice transformation.  相似文献   

10.
Domain structures in thin sputtered amorphous FeB films are studied by means of the longitudinal Kerr effect. In addition to the irregular domain structure characteristic of soft magnetic materials, we observe in certain regions a fine equilibrium domain structure with periodicity of a few micrometers. The Kerr contrast indicates that the magnetization at the surface of the film lies partially along the stripe direction. These characteristics and the behavior in applied fields suggests that the domains are similar to type II “strong stripe domains” observed earlier in permalloy films. Extending an earlier theory by Hara, we use a stray-field-free model with tilted orthorhombic anisotropy to show that there are at least two qualitatively different strong stripe structures: type IIa with surface magnetization perpendicular to the stripes and type IIb with surface magnetization at least partially parallel to the stripes. Type IIb is favored when Kp/K0<cos 2θ 0 where K0 is the anisotropy component with axis tilted by θ0 out of the film plane, and Kp is an in-plane anisotropy perpendicular to K0. Strong stripes in amorphous FeB appear to be type IIb while those in permalloy are usually type IIa.  相似文献   

11.
Magnetic excitations in a series of GaMnAs ferromagnetic semiconductor films were studied by ferromagnetic resonance (FMR). Using the FMR approach, multi-mode spin wave resonance spectra have been observed, whose analysis provides information on magnetic anisotropy (including surface anisotropy), distribution of magnetization precession within the GaMnAs film, dynamic surface spin pinning (derived from surface anisotropy), and the value of exchange stiffness constant D. These studies illustrate a combination of magnetism and semiconductor physics that is unique to magnetic semiconductors.  相似文献   

12.
Using the full potential linearized augmented plane wave (FLAPW) method, thickness dependent magnetic anisotropy of ultrathin FeCo alloy films in the range of 1 monolayer (ML) to 5 ML coverage on Pd(0 0 1) surface has been explored. We have found that the FeCo alloy films have close to half metallic state and well-known surface enhancement in thin film magnetism is observed in Fe atom, whereas the Co has rather stable magnetic moment. However, the largest magnetic moment in Fe and Co is found at 1 ML thickness. Interestingly, it has been observed that the interface magnetic moments of Fe and Co are almost the same as those of surface elements. The similar trend exists in orbital magnetic moment. This indicates that the strong hybridization between interface FeCo alloy and Pd gives rise to the large magnetic moment. Theoretically calculated magnetic anisotropy shows that the 1 ML FeCo alloy has in-plane magnetization, but the spin reorientation transition (SRT) from in-plane to perpendicular magnetization is observed above 2 ML thickness with huge magnetic anisotropy energy. The maximum magnetic anisotropy energy for perpendicular magnetization is as large as 0.3 meV/atom at 3 ML film thickness with saturation magnetization of . Besides, the calculated X-ray magnetic circular dichroism (XMCD) has been presented.  相似文献   

13.
We have investigated the effect of surface chemisorption on the spin reorientation transitions in magnetic ultrathin Fe films on Ag(0 0 1) by means of the polar and longitudinal magneto-optical Kerr effect (MOKE) and X-ray magnetic circular dichroism (XMCD) measurements. It is found by the MOKE that adsorption of O2 and NO induces the shift of the critical thickness for the transitions to a thinner side, together with the suppression of the remanent magnetization and the coercive field of the Fe film. This implies destabilization of the perpendicular magnetic anisotropy. On the other hand, H2 adsorption is found not to change the magnetic anisotropy, though the enhancement of the coercive field is observed. The XMCD reveals that although both the spin and orbital magnetic moments along the surface normal are noticeably reduced upon O2 and NO adsorption, the reduction of the orbital magnetic moments are more significant. This indicates that the destabilization of the perpendicular magnetic anisotropy upon chemisorption of O2 and NO originates from the change of the spin-orbit interaction at the surface.  相似文献   

14.
We determine the minimal domain structure for the equilibrium thickness of stripes as well as for the minimal energy of the domain configuration in ultrathin films of ferromagnetically coupled spins, where the easy direction of magnetization is perpendicular to the film. It is found that the equilibrium thickness of stripes and walls depend on the exchange energy. The normalized anisotropy, f, depends on interplay between the magnetic and anisotropy energies and is almost independent of the exchange energy inside the wall. The results are compared with the experimental data for thin Ag/Fe/Ag (0 0 1) films and a good coincidence is obtained between both results.  相似文献   

15.
Thin iron films have been grown on (001) GaAs substrates by low pressure metal organic chemical vapor deposition (LP-MOCVD) at different temperatures with the pressure of 150 Torr. X-ray diffraction (XRD) analysis showed that all films have only one strong diffraction peak (110). The surface of Fe film became smooth with increasing the growth temperature. Magnetization measurements showed that the Fe films grown at different temperatures were ferromagnetic with easy axis parallel to the film surface and hard axis perpendicular to the substrates. The field dependence of magnetization along two axes showed a remarkable difference, implying that the samples have strong magnetic anisotropy. Furthermore, when the applied magnetic field is perpendicular to the Fe surface, a sharp jump in the hysteresis loop could be observed, followed by a broad shoulder, which is related to the interface effect, the existence of carbon and the formation of 180°/90° magnetic domains.  相似文献   

16.
The effect of magnetic linear dichroism in photoemission of Fe 3p electrons was used to investigate the magnetic properties of the Si(100)2 × 1 surface on which iron films up to 10 monolayers thick were deposited at room temperature under ultrahigh vacuum. The experiments were performed with linearly polarized light (at a photon energy of 135 eV) incident at an angle of 30° to the surface. The photoelectron spectra were measured in a narrow solid angle oriented along the normal to the sample surface for two opposite magnetization directions which were parallel to the surface plane and perpendicular to the polarization vector of the light wave. An analysis of the data obtained showed that the effect has a threshold character and appears after deposition of eight Fe monolayers, when the ferromagnetic silicide Fe3Si is formed on the surface.  相似文献   

17.
The magnetic properties of epitaxial iron films up to 80 monolayers (ML) thickness grown on Si(0 0 1) by using a template technique were investigated by means of superconducting quantum interference device and magneto-optic Kerr effect techniques. The thinnest films investigated (∼3 ML) exhibit a composition close to Fe3Si with a Curie temperature below room temperature (RT) and strong out-of-plane remanent magnetization that reflects the presence of a dominant second order surface anisotropy term. Thicker films (⩾4 ML) are ferromagnetic at RT with remanent magnetization in film-plane and a composition closer to pure Fe with typically 8–10% silicon content. When deposited at normal incidence such films show simple in-plane fourfold anisotropy without uniaxial contribution. The relevant fourth-order effective anisotropy constant K4eff was measured versus film thickness and found to change its sign near 18 ML. The origin of this remarkable behavior is investigated by means of a Néel model and mainly traced back to fourth-order surface anisotropy and magneto-elastic effects related to the large biaxial in-plane compressive strain up to 3.5% in the thinnest (⩽25 ML) films.  相似文献   

18.
Stress measurements with sub-monolayer sensitivity are performed to investigate the correlation between mechanical film stress and magneto-elastic anisotropy in epitaxial ferromagnetic monolayers. The magneto-elastic coupling B1 of Fe(1 0 0) films is measured directly. Magnitude and sign of B1 deviate from the respective bulk value. A strain-dependent correction of the magneto-elastic coupling coefficient B1 describes the apparent thickness dependence of B1 for film thicker than 10 nm. For thinner films, the possible contribution of surface corrections is discussed to explain the almost constant B1. The implications of a modified magneto-elastic coupling for the anisotropy of ultrathin films is elucidated.  相似文献   

19.
The possibility of achieving soft magnetization in semi-hard magnetic films such as Fe, Fe93.5Si6.5, Fe50Co50 and Fe70Co30 is investigated by depositing films on an Fe20Ni80 underlayer by oblique-incidence evaporation. The magnetic anisotropy of the underlayer is strengthened to a depth of several lattice parameters by vapor deposition of the film at an oblique angle to the substrate surface. This method also allows magnetic anisotropy to be induced in strongly isotropic semi-hard magnetic overlayers to a thickness of a few thousands Angstroms. The coercive force of bilayer films measured along the hard-axis is reduced remarkably by this process, and the strength of the anisotropy field is demonstrated to be readily controllable. When magnetic anisotropy exists in both magnetic layers, a significant change is observed in the magnetization processes of the semi-hard magnetic layer and the coercive forces in the hard magnetization direction is dramatically reduced. Soft magnetization of the semi-hard magnetic layer cannot be achieved when magnetic anisotropy exists in only one of the magnetic layers.  相似文献   

20.
Pulsed laser deposition (uPLD) in vacuum by means of subpicosecond laser pulses is a powerful, versatile technique for the production of films constituted by nanoparticles. On impact with the deposition substrate, the nanodrops ejected from the target assume an oblate ellipsoidal shape, solidifying with the major cross-section parallel to the substrate plane. These features and the difficult coalescence among the deposited nanoparticles are peculiar characteristics specific to the films obtained by uPLD. In the case of magnetic nanoparticle films obtained by means of this technique, a magnetization isotropy in the film plane and a hard magnetization axis orthogonal to the film plane are expected. This simple assumption, generated by the specific shape and orientation of the deposited nanoparticles, was not experimentally verified up to now. The present investigation represents the first experimental validation of magnetic anisotropy, determined by the peculiar morphology and topology of the constituent particles, in the uPLD NixSi100−x nanoparticle films. The in-plane isotropic magnetization behaviour, as well as the presence of a hard magnetization axis perpendicular to the sample surface were demonstrated for all investigated films. The difficult coalescence among the magnetic nanoparticles, even at high Ni volume fractions, is confirmed by the behaviour of the initial magnetization curve, typical for single-domain nanoparticles systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号