首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for calculation matrix-elements of the density operator for the superposition of two electromagnetic fields from the matrix-elements of the two components is developed. In the special case of superposition of a stationary coherent field and a stationary chaotic field results are compared with Peina's results.  相似文献   

2.
This paper presents a quantum mechanical formalism of the classical coherence theory, within which the generalized radiance function defined in the time domain is regarded as a phase space representative of a time-dependent correlation operator of a polychromatic field. The theory deals with both stationary and nonstationary fields and, for a stationary field, provides a new operator formalism of the usual theory of optical coherence developed in the space-frequency domain. New results include an operator representation of the mutual coherence function, an operator version of the Wiener-Khintchine theorem, and an operator theorem that projects the correlation operator of a polychromatic field onto a particular spectral component. As illustrative examples, the previous formulas regarding the relationship between temporal coherence and spatial coherence, and the relationship between spectral properties and coherence properties are derived from the new operator formulas. The correspondence of the present formalism to the usual formalism using Dirac notation to describe the propagation of a stationary, partially coherent, quasi-monochromatic field is also considered.  相似文献   

3.
This paper deals with scattering from a random-medium layer with rough boundaries. The fluctuations of the surface heights and medium permittivity are assumed to be small and smooth. All random quantities are assumed to be stationary and independent of each other. After the introduction of approximate boundary conditions, the system of partial differential equations is transformed into an integral equation where the fluctuations of the problem are represented as a zero-mean random operator. Employing smoothing, integral equations for the coherent fields are obtained. Use of the Helmholtz operator leads to solution for the coherent propagation constant while the boundary operators lead to coherent Fresnel coefficients. The characteristics of the results are illustrated by considering several examples.  相似文献   

4.
We find that a squeezing transformation can efficiently simplify the density operator equation of field damping in a squeezed bath. Then the entangled state representation is introduced to solve the simplified equation and the time evolution of density operator, which turns out to be a mixed coherent squeezed state. Work supported by the President Foundation of Chinese Academy of Science and Specialized research fund for the doctorial progress of Higher Education (SRFDP).  相似文献   

5.
This paper studies the dynamics of nonlocality for a bosonic entangled coherent state in a phase damping model. The density operator of the system is solved by using a superoperator method. The dynamics of nonlocality for the bosonic entangled coherent state is uncovered by the Bell operator based on the pseudospin operator of a light field. The dynamics of the nonlocality for this state has also been studied by other Bell operators. The result of the numerical calculations of the Bell function shows that the quantum nonlocality heavily depends on the chosen Bell operator.  相似文献   

6.
In the quantum information theory operates with qubits and N-qubits that can be express through coherent states. Density operator admits a representation in terms of coherent states formalism. Consequently, in this paper the notions of qubit and density operators are described in the framework of coherent states. We have expressed a qubit as a coherent state, and thus a sequence of qubits becomes the tensor product of the coherent states. For the ensembles of qubits, it could be used the density operator, in order to describe the informational content of the ensemble. The coherent states representation may play an important role in the quantum information theory and the use of this formalism is not only theoretical, but also, due to its applications, of some practical relevance.  相似文献   

7.
Gibbs entropy is invariant for the Baker map. A Jordan basis spectral decomposition of the Baker Frobenius-Perron operator suggests that any initial density evolves to the stationary density that has maximal entropy. This entropy conundrum is resolved by considering the difference between weak and strong convergence. A binary representation is used to make these points transparent. (c) 1998 American Institute of Physics.  相似文献   

8.
Starting from a multimode hamiltonian for a system of radiating oscillators coupled with atomic reservoirs, the secular master equation for the radiation-density operator is calculated in the interaction picture after elimination of the atomic variables. Using the differential operator representation for coherent states this equation is transcribed into a multimode Fokker-Planck equation. The stationary solution in momentum space is given for the threshold region. Fourier transformation to configuration space results in a quasi-free energy formula for a laser oscillator exhibiting spatial dispersion.  相似文献   

9.
The time evolution of vacuum energy density is investigated in the coherent states of inflationary universe using a linear invariant approach. The linear invariants we derived are represented in terms of annihilation operators. On account of the fact that the coherent state is an eigenstate of an annihilation operator, the wave function.in the coherent state is easily evaluated by solving the eigenvalue equation of the linear invariants. The expectation value of the vacuum energy density is derived using this wave function.Fluctuations of the scalar field and its conjugate momentum are also investigated. Our theory based on the linear invariant shows that the vacuum energy density of the universe in a coherent state is decreased continuously with time due to nonconservative force acting on the coherent oscillations of the scalar field,which is provided by the expansion of the universe. In effect, our analysis reveals that the vacuum energy density decreases in proportion to t-β where β is 3/2 for radiation-dominated era and 2 for matter-dominated era. In the case where the duration term of radiation-dominated era is short enough to be negligible, the estimation of the relic vacuum energy density agrees well with the current observational data.  相似文献   

10.
The time evolution of vacuum energy density is investigated in the coherent states of inflationary universe using a linear invariant approach. The linear invariants we derived are represented in terms of annihilation operators. On account of the fact that the coherent state is an eigenstate of an annihilation operator, the wave function in the coherent state is easily evaluated by solving the eigenvalue equation of the linear invariants. The expectation value of the vacuum energy density is derived using this wave function. Fluctuations of the scalar field and its conjugate momentum are also investigated. Our theory based on the linear invariant shows that the vacuum energy density of the universe in a coherent state is decreased continuously with time due to nonconservative force acting on the coherent oscillations of the scalar field, which is provided by the expansion of the universe. In effect, our analysis reveals that the vacuum energy density decreases in proportion to tβ where β is 3/2 for radiation-dominated era and 2 for matter-dominated era. In the case where the duration term of radiation-dominated era is short enough to be negligible, the estimation of the relic vacuum energy density agrees well with the current observational data.  相似文献   

11.
In this paper we have showed that the qubit can be expressed through the coherent states. Consequently, a message, i.e. a sequence of qubits, is expressed as a tensor product of coherent states. In the quantum information theory and practice, only the code and key message are expressed as a sequence of qubits, i.e. through a quantum channel, the properly information will be transmitted by using a classical channel. Even if the most used coherent states in the quantum information theory are the coherent states of the harmonic oscillator (particularly, expressing by them the Schrödinger “cat states” and the Bell states), several authors have been demonstrated that other kind of coherent states may be used in quantum information theory. For the ensembles of qubits, we must use the density operator, in order to describe the informational content of the ensemble. The diagonal representation of the density operator, in the coherent state representation, is also useful to examine the entanglement of the states.  相似文献   

12.
In the paper we construct a new set of coherent states for a deformed Hamiltonian of the harmonic oscillator, previously introduced by Beckers, Debergh, and Szafraniec, which we have called the BDS-Hamiltonian. This Hamiltonian depends on the new creation operator a +, i.e. the usual creation operator displaced with the real quantity . In order to construct the coherent states, we use a new measure in the Hilbert space of the Hamiltonian eigenstates, in fact we change the inner product. This ansatz assures that the set of eigenstates be orthonormalized and complete. In the new inner product space the BDS-Hamiltonian is self-adjoint. Using these coherent states, we construct the corresponding density operator and we find the P-distribution function of the unnormalized density operator of the BDS-Hamiltonian. Also, we calculate some thermal averages related to the BDS-oscillators system which obey the quantum canonical distribution conditions.  相似文献   

13.
V Balakrishnan 《Pramana》1979,13(4):337-352
A phenomenological interpolation model for the transition operator of a stationary Markov process is shown to be equivalent to the simplest difference approximation in the master equation for the conditional density. Comparison with the formal solution of the Fokker-Planck equation yields a criterion for the choice of the correlation time in the approximate solution. The interpolation model is shown to be form-invariant under an iteration-cum-rescaling scheme. Next, we go beyond Markov processes to find the effective time-development operator (the counterpart of the conditional density) in the following very general situation: the stochastic interruption of the systematic evolution of a variable by an arbitrary stationary sequence of randomizing pulses. Continuous-time random walk theory with a distinct first-waiting-time distribution is used, along with the interpolation model for the transition operator, to obtain the solution. Convenient closed-form expressions for the ‘averaged’ time-development operator and the autocorrelation function are presented in various special cases. These include (i) no systematic evolution, but correlated pulses; (ii) systematic evolution interrupted by an uncorrelated (Poisson) sequence of pulses.  相似文献   

14.
借助于Pegg-Barnett相位算符理论和数值计算方法,研究了增光子奇偶相干态的相位概率分布,在此基础之上,讨论了有关数算符和相位算符的压缩特性。结果表明,增光子奇偶相干态的相位概率分布与通常的奇偶相干态、非线性相干态不同,在这种新的奇偶相干态中,其Pegg-Barnett相位概率分布能明显地反映出不同的量子相位信息和干涉特性。同时发现,在参量α的某些不同的取值范围内,增光子奇偶相干态在数算符和相位算符分量上均存在压缩效应。  相似文献   

15.
Projecting the closed form expression of the de Sitter scalar field operator onto the Minkowskian positive frequency massless modes, we compute the corresponding Bogolubov coefficient which is associated to the (massless) quasiparticle creation during the stationary quasi-de Sitter stage of the Universe. Thereafter, we derive the expression of the thermalized energy density which reveals an interesting mixture of de Sitter false vacuum and dark-radiation, exotic dust and black body radiation. Setting the temperature to the value of the Hawking one for the de Sitter spacetime, we finally analyze the (straightforward) back-reaction of the newly created “matter” on the scale function. It basically points out three stages of highly continuous evolution represented by an initially short radiation-like era, a somewhat long-lasting connecting phase made of coherent massless oscillations, in its beginnings, ended up by the dark-radiation (i.e. curvature-like term) contribution and, finally, a much slower exponential expansion than the initial de Sitter one.  相似文献   

16.
An exact equation is derived for the evolution of the density operator in the coherent state representation describing spontaneous emission from a system of harmonic oscillators.  相似文献   

17.
A spectral decomposition of the Frobenius–Perron operator is constructed for one-dimensional maps with intermittent chaos, using the method of coherent states. A technique using the spectral density function is applied to the the well-known cusp map, which generates weak type-II intermittency. Higher-order corrections are obtained to the leading 1/t long-time behavior of the xx autocorrelation.  相似文献   

18.
Evolution formulas of the density operator, the photon number distribution, and the Wigner function are derived for the problem on the optical fields propagation in realistic environments. Using the idea “reservoir modeled by beam splitter (BS)” and the Weyl expansion of the density operator, we obtain these formulas cleverly, which are very useful for quantum optics and quantum statistics. As an application, we study the time evolution of the photon number distribution and the Wigner function for single-photon-added coherent state in thermal environment.  相似文献   

19.
We analyze traces of powers of the time evolution operator of a periodically kicked top. Semiclassically, such traces are related to periodic orbits of the classical map. We derive the semiclassical traces in a coherent state basis and show how the periodic orbits can be recovered via a Fourier transform. A breakdown of the stationary phase approximation is detected. The quasi energy spectrum remains elusive due to lack of knowledge of sufficiently many periodic orbits. Divergencies of periodic orbit formulas are avoided by appealing to the finiteness of the quantum mechanical Hilbert space. The traces also enter the coefficients of the characteristic polynominal of the Floquet operator. Statistical properties of these coefficients give rise to a new criterion for the distinction of chaos and regular motion.  相似文献   

20.
陈小余  仇佩亮 《中国物理》2001,10(9):779-782
An analytical expression is given to the coherent information of the thermal radiation signal transmitted over the thermal radiation noise channel, one of the most essential quantum Gaussian channels. Focusing on the single normal mode of the thermal radiation signal and noise, we resolve the entangled state density operator, which characterizes quantum information transmission, into a direct product of two parts, with each part being a thermal radiation density operator. The calculation is aided by the technique known as "integral within ordered product of operators".  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号