首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polaron decay in n-type InAs quantum dots has been investigated using energy dependent, mid-infrared pump–probe spectroscopy. By studying samples with differing ground state to first excited state energy separations the relaxation time has been measured between 40 and 60 meV. The low-temperature decay time increases with increasing detuning between the pump energy and the optical phonon energy and is maximum (55 ps) at 56 meV. From the experimentally determined decay times we are able to extract a low-temperature optical phonon lifetime of 13 ps for InAs QDs. We find that the polaron decay time decreases by a factor of 2 at room temperature due to the reduction of the optical phonon lifetime.  相似文献   

2.
Polaron relaxation processes in a series of n-type InAs quantum dots (QDS) have been investigated using energy-dependent far-infrared pump–probe spectroscopy. For energies up to 53 meV, polarons decay to 2 longitudinal acoustic phonons; above this energy additional decay channels open resulting in a reduction of the decay time. Inter-state transfer has been observed between closely spaced p-like excited states, with the measured transfer times in good agreement with calculations assuming acoustic phonon assisted transfer. Finally, for QDs containing 2 electrons we observe evidence of a spin-flip process resulting in long (700 ps) relaxation times.  相似文献   

3.
The dynamics of intersubband relaxation in GaAs quantum wells and the role of hot carriers and the phonon distributions have been investigated using two different optical techniques with femtosecond resolution: 1) time-resolved photoluminescence and 2) pump and probe experiments. The (2→1) intersubband relaxation times have been measured as functions of well widths (100Å < Lwell < 220Å), under different experimental conditions (15K < Tlattice < 300K, and 1×1010 cm-2 < excitation densities < 1×1012 cm-2). The electron intersubband relaxation time is deduced from the decay time of the n=2 well luminescence (or differential transmission) intensity. For thin wells (<150Å), a fast intersubband (2→1) relaxation time ≤ 3 ps has been measured. For thicker wells, the measured decay times are found to be critically dependent on the excitation conditions (vary from 5 ps to 40 ps). The well width dependence of the intersubband relaxation time does not show the strong dependence (2 orders of magnitude) predicted theoretically for electron-LO phonon scattering. Our results show that the hot phonon populations and the slow carrier cooling rate limit the observation of subpicosecond relaxation time. For thick well widths, our results also suggest that hot carriers effects play an important role in the intersubband relaxation mechanisms.  相似文献   

4.
We have fabricated very high-quality In0.13Ga0.87N/GaN multiple quantum wells with thickness as small as on (0 0 0 1) sapphire substrate using metal organic chemical vapour deposition (MOCVD). We have investigated these ultra-thin multiple quantum wells by continuous wave (cw) and time resolved spectroscopy in the picosecond time scales in a wide range of temperatures from 10 K to 290 K. In the luminescence spectrum at 10 K we observed a broad peak at 3.134 eV which was attributed to the quantum wells emission of InGaN. The full-width at half-maximum of this peak was 129 meV at 10 K and the broadening at low temperatures which was mostly inhomogeneous was thought to be due to compositional fluctuations and interfacial disorder in the alloy. The ultra narrow width of the quantum well was found to have a very profound effect in increasing the emission linewidth. We also observed an intense and narrow peak at 3.471 eV due to the GaN barrier. The temperature dependence of the luminescence was studied. The peak positions and intensities of the different peaks were obtained after a careful Lorentzian analysis. The activation energy of the InGaN quantum well emission peak was estimated as 69 meV. The lifetime of the quantum well emission was found to be 720 ps at 10 K. The results were explained by considering the localization of the excitons due to potential fluctuations. At higher temperatures the non-radiative recombination was found to be very dominant.  相似文献   

5.
《Nuclear Physics A》1987,467(3):528-538
Lifetimes and side feeding times in 120Xe were measured using the recoil-distance Doppler-shift technique, taking γ-singles spectra as well as γγ-coincidences. The reaction 110Cd(13C, 3n)120Xe was used at a bombarding energy of 56 MeV. Lifetimes of 1.0 (5) ps and 1.9 (6) ps respectively were obtained for the 101+ and 81+ states from their decay curves taken in coincidence with the strongest discrete feeding transitions. Using these lifetimes, we determined side feeding times of 2.2(13)ps for the 101+ state and 3.5 (26) ps for the 81+ state, from their decay curves taken in coincidence with transitions below these levels. Decay curves taken from γ-singles spectra yielded side feeding times of 2.9 (14) ps for the 101+ state and 4.1 (28) ps for the 81+ state.  相似文献   

6.
We have investigated the polaron dynamics in n-doped InAs/GaAs self-assembled quantum dots by pump-probe midinfrared spectroscopy. A long T1 polaron decay time is measured at both low temperature and room temperature, with values around 70 and 37 ps, respectively. The decay time decreases for energies closer to the optical phonon energy. The relaxation is explained by the strong coupling for the electron-phonon interaction and by the finite lifetime of the optical phonons. We show that, even for a large detuning of 19 meV from the LO photon energy in GaAs, the carrier relaxation remains phonon assisted.  相似文献   

7.
The charge state dependence of positron lifetime and trapping at divacancy (V2) in Si doped with phosphorus or boron has been studied after 15 McV electron irradiation up to a fluence of 8.0×1017 e/cm2. The positron trapping cross sections for V 2 2– , V 2 and V 2 0 at 300 K were about 6×10–14, 3×10–14 and 0.1–3×10–14 cm2, respectively. For V 2 + , however, no positron trapping was observed. The marked difference in the cross sections comes from Coulomb interaction between the positron and the charged divacancy. The trapping rates for V 2 0 and V 2 2– have been found to increase with decreasing temperature in the temperature range of 10–300 K. These results are well interpreted by a two-stage trapping model having shallow levels with energy of 9 meV (V 2 0 ) and 21 meV (V 2 2– ). The appearance of a shallow level for V 2 0 can not be explained by a conventional Rydberg state model. The lifetime (290–300 ps) in V 2 0 is nearly constant in the temperature range from 10 to 300 K, while that in V 2 2– increases from 260 ps at 10 K to 320 ps at 300 K. The lifetime (260 ps) in V 2 2– is shorter than that in V 2 0 at low temperature, which is due to the excess electron density in V 2 2– . At high temperature, however, the longer lifetime of V 2 2– than that of V 2 0 is attributed to lattice relaxation around V 2 2– .  相似文献   

8.
We propose the idea of developing THz quantum cascade lasers (QCLs) with GaN-based quantum well (QW) structures with significant advantages over the currently demonstrated THz lasers in the GaAs-based material system. While the ultrafast longitudinal optical (LO) phonon scattering in AlGaN/GaN QWs can be used for the rapid depopulation of the lower laser state, the large LO-phonon energy (∼90 meV) can effectively reduce the thermal population of the lasing states at higher temperatures. Our analysis of one particular structure has shown that a relatively low threshold current density of 832 A/cm2 can provide a threshold optical gain of 50/cm at room temperature. We have also found that the characteristic temperature in this structure is as high as 136 K.  相似文献   

9.
Transient mid infrared (MIR) absorption spectroscopy is used to investigate transitions between higher electronic subbands in semiconductor quantum well (QW) structures after interband photoexcitation with intense picosecond pulses in the visible spectral range. Our investigation focuses on the e2–e3 intersubband transition in an asymmetric undoped GaAs/AlGaAs QW structure. At an injected nonequilibrium carrier density of 1×1013 cm−2/QW, an e2–e3 absorption band at 99 meV with a spectral width of 5 meV is found. For a higher density studied, 3×1013 cm−2/QW, the band is broadened and blueshifted by 30 meV. Intersubband absorption signals are distinguished from free-carrier absorption signals in the MIR by their characteristic time behavior.  相似文献   

10.
Ultrafast gain dynamics in quantum-dot optical amplifiers has been studied by using the pump-probe and four-wave mixing (FWM) techniques. It was found that there are at least three nonlinear processes, which are attributed to carrier relaxation to the ground states, phonon scattering, and carrier capture from the wetting layers into the quantum dots (QDs). The relevant time constants were evaluated to be ~90 fs, ~260 fs, and ~2 ps, respectively, under a 50 mA bias condition. The compressed gain recovered to 3% of its initial value in 4 ps, and no recovery component slower than 2 ps could be seen in the temporal range tested. This is quite different from the feature in quantum wells, where a very slow component (> 50 ps) exists. This suggests a possibility of enhancing the operation speed of semiconductor optical amplifiers by using QDs as an active layer. The third-order optical susceptibility (χ(3)) has been evaluated by means of both nonlinear transmission and FWM experiments. The results show that the nonlinearity expressed by χ(3)/g 0 is quite similar to that of bulk and quantum wells, which can be explained by the similar relaxation times.  相似文献   

11.
We measured the absorption and photoresponse saturation of GaAs/AlGaAs quantum wells as a function of the incident power. We used picosecond micropulses with a power density up to 10GW/cm2 delivered by a free electron laser. First, we compared the absorption in a sample with a bound-to-bound transition to the absorption in a sample with a bound-to-free transition, and found that the electron lifetime in the bound-to-bound transition is about four times shorter than for the bound-to-free transition. Then, we measured the photoresponse saturation in multi-quantum well detectors for different biases. We observed that the electron lifetime increases with the applied electric field from about 1 ps at zero field up to 10ps at 20kV/cm.  相似文献   

12.
We have studied the photoluminescence and time-resolved photoluminescence of a set of InGaN quantum wells with well thickness from 1 to 7.5 nm. An analysis of the phonon satellites at 5 K shows Huang–Rhys factors from 0.32 to 0.44. The increase of this factor is caused by the electron–hole separation induced by the piezoelectric field. The time-resolved photoluminescence at room temperature shows that the decay time of the 1 and 2 nm wells does not depend on the wavelength. The maximum decay time is around 600 ps for the 2, 3 and 4 nm wells. However, for the 3 and 4 nm wells a decrease of the photoluminescence decay time is observed at the highest wavelengths. This suggest the onset of a non-radiative process in these samples. The optimum well width for efficient emission for these single quantum wells was found to be 2 nm.  相似文献   

13.
金华  刘舒  张振中  张立功  郑著宏  申德振 《物理学报》2008,57(10):6627-6630
设计了(CdZnTe,ZnSeTe)/ZnTe复合量子阱结构,并用吸收光谱、室温光致发光谱和飞秒脉冲抽运-探测方法研究了该复合结构中的激子隧穿过程.分别测量了该结构中CdZnTe/ZnTe量子阱层和ZnSeTe/ZnTe量子阱层中激子衰减时间.观察到从CdZnTe/ZnTe量子阱层向ZnSeTe/ZnTe量子阱层的快速激子隧穿,隧穿时间为5.5ps. 关键词: (CdZnTe ZnSeTe)/ZnTe复合量子阱 激子 隧穿 抽运-探测  相似文献   

14.
Novel applications of impurity-induced disordering (IID) in semiconductor integrated optoelectronics are discussed and some requirements of the IID process are quantified. The effect of boron and fluorine as disordering species, in both GaAs/AlGaAs and GaInAs/AlGaInAs, has been studied. Because boron and fluorine are not active dopants at room temperature, low-loss high-resistivity waveguides can be formed. In the GaAs/AlGaAs system fluorine has been found to produce larger changes than boron for similar annealing conditions. Fluorine-disordered multiple quantum well waveguide structures exhibited blue shifts of up to 100 meV in the absorption edge (representing complete disordering). The absorption coefficient in partially disordered structures at near-band-edge wavelengths was as low as 4.7 dB cm–1. This absorption edge shift was accompanied by substantial changes, (>1%) in the refractive index. Boron- and fluorine-induced disordering of GaInAs/AlGaInAs quantum well structures lattice-matched to InP has also been investigated. Only small blue shifts in the exciton peak, ascribed to implantation damage, were observed in boron-implanted samples, but blue shifts of over 40 meV (again representing complete disordering) were observed in the fluorine-implanted samples.  相似文献   

15.
The time evolution and kinetics of photoluminescence (PL) spectra of interwell excitons in double GaAs/AlGaAs quantum wells (n-i-n structures) have been investigated under the pulse resonance excitation of intrawell 1sHH excitons using a pulsed tunable laser. It is found that the collective exciton phase arises with a time delay relative to the exciting pulse (several nanoseconds), which is due to density and temperature relaxation to the equilibrium values. The origination of the collective phase of interwell excitons is accompanied by a strong narrowing of the corresponding photoluminescence line (the line width is about 1.1 meV), a superlinear rise in its intensity, a long time in the change of the degree of circular polarization, a displacement of the PL spectrum toward lower energies (about 1.5 meV) in accordance with the filling of the lowest state with the exciton Bose condensate, and a significant increase in the radiative decay rate of the condensed phase. The collective exciton phase arises at temperatures T<6 K and interwell exciton densities n=3×1010 cm?2. Coherent properties of the collective phase of interwell excitons and experimental manifestations of this coherence are discussed.  相似文献   

16.
《Current Applied Physics》2014,14(8):1063-1066
A ferromagnetic ordering with a Curie temperature of 50 K of fifteen layer of InGaMnAs/GaAs multi quantum wells (MQWs) structure grown on high resistivity (100) p-type GaAs substrates by molecular beam epitaxy (MBE) was found. It is likely that the ferromagnetic exchange coupling of sample with Curie temperature of 50 K is hole-mediated resulting in Mn substituting In or Ga sites. Temperature and excitation power dependent PL emission spectra of InGaMnAs MQWs sample grown at temperature of 170 °C show that an activation energy of Mn ion on the first quantum confinement level in InGaAs quantum well is 36 meV and impurity Mn is partly ionized. It is found that the activation energy of 36 meV of Mn ion in the QW is lower than the activation energy of 110 meV for a substitutional Mn impurity in GaAs. These measurements provide strong evidence that an impurity band existing in the bandgap due to substitutional Mn ions and it is the location of the Fermi level within the impurity band that determines Curie temperature.  相似文献   

17.
Passive mode locking and saturable absorber Q-switching of neodymium lasers at 1.3 μm with PbS-doped phosphate glasses are demonstrated. Q-switched pulses of 120 ns (0.1 μJ) in duration (energy) and the average output power of 3 mW from a quasi-cw diode-pumped Nd3+:KGW laser and ultrashort pulses of a maximum of 250 μJ in energy and 150 ps in duration from a Nd3+:YAP laser were obtained. The bleaching decay rate of the samples was found to increase with the Quantum Dot’s size decreasing due to the enhancement of quantum confinement effects for smaller dots and stronger overlapping of the electron and trap state wave functions. Received: 23 January 2002 / Revised version: 2 April 2002 / Published online: 20 December 2002 RID="*" ID="*"Corresponding author. Fax: +375-17/232-6286, E-mail: savitski@eudoramail.com  相似文献   

18.
Zhi  Qin  Ono  A.  Wenxin  Li  Lili  Zhao  Tongyu  Sun  Ambe  S.  Ohkubo  Y.  Iwamoto  M.  Kobayashi  Y.  Maeda  H.  Ambe  F. 《Zeitschrift für Physik A Hadrons and Nuclei》1975,272(3):315-319
The radiative decays of 4.7 d119m Te and 16 h119g Te have been re-investigated. Compared to previous investigations, almost twice more transitions have been observed. Revised decay schemes are proposed in which most of the observed transitions are attributed. The half lives of the levels at 270.45 keV (g 7/2), 644.01 keV (s 1/2), 1212.69 keV (9/2+) and 1366.15 keV (h 11/2) have been measured by means of the delayed coincidence method and found to be 35±10ps, <10ps, <10 ps and 112±15 ps respectively. The states are discussed in the framework of current models.  相似文献   

19.
秦朝朝  崔明焕  宋迪迪  何伟 《物理学报》2019,68(10):107801-107801
多激子效应通常是指吸收单个光子产生多个激子的过程,该效应不仅可以为研究基于量子点的太阳能电池开拓新思路,还可以为提高太阳能电池的光电转换效率提供新方法.但是,超快多激子产生和复合机制尚不明确.这里以CdSeS合金结构量子点为研究对象,研究了其多激子生成和复合动力学.稳态吸收光谱显示, 510, 468和430 nm附近的稳态吸收峰,分别对应1S_(3/2)(h)-1S(e)(或1S), 2S_(3/2)(h)-1S(e)(或2S)和1P_P(3/2)(h)-1P(e)(或1P)激子的吸收带.通过飞秒时间分辨瞬态吸收光谱和纳秒时间分辨荧光光谱两种时间分辨光谱技术对CdSeS合金结构量子点的超快动力学进行了探究,结果显示, 1S激子的双激子复合时间大概是80 ps,这一时间比传统量子点的双激子复合时间(小于50 ps)延长了近一倍,结合最近发展的超快界面电荷分离技术,在激子湮灭之前将其利用起来,这一时间的延长将有很大的应用前景;其中,在2S和1P激子中除上述双激子复合外,还存在一个通过声子耦合路径的空穴弛豫过程,时间大概是5—6 ps.最后,利用纳秒时间分辨荧光光谱得到该样品体系单激子复合的时间约为200 ns.  相似文献   

20.
The effects of carrier transport on turn-on delay time in multiple quantum well lasers were investigated both theoretically and experimentally. By using rate equation analysis with two components of the carrier density inside and outside of the quantum wells, we found that carrier transport caused two important effects: one is the stationary effect of a significant reduction in carrier density in quantum wells; the other is an increase in differential carrier lifetime.As an experimental investigation, compressively strained 1.3 m GalnAsP/InP multiple quantum well (MQW) lasers were fabricated and their turn-on delay times were measured and investigated. The short-cavity buried-heterostructure lasers showed low-threshold current (2 to 3 mA) and small turn-on delay time (<200 ps) at biasless 30 mA pulse current. Although these performances are suitable for high-speed digital transmission, it was found that the carrier lifetimes derived from the turn-on delay measurement were larger for strained quantum well lasers than for conventional quantum well lasers and double heterostructure lasers. These phenomena are explained using the carrier transport model and are discussed. The solutions for further reduction in carrier lifetime and turn-on delay are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号