首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The magnetic structure of UAs0.97Se0.03 has been studied by neutron diffraction from a single crystal in zero applied magnetic field. It is found to be antiferromagnetic, of type-IA (++--) below To = 75.6 K and of type-I (+-+-) above To. The type-I persists till TIC = 113.5 K, while above it and up to TN = 122 K an incommensurate phase appears, thereby modifying the magnetic structure in pure UAs. The k-value of the wavevector K (along cubic axes) is changing from 0.642 at TN to 0.652 at TIC. The transitions at To and TIC are first-order while the transition at TN is second-order. The ordered magnetic moment is 2.15 μB at T = 4.2 K, it varies smoothly to 1.95 μB at T = 75.4 K and drops drastically to 1.47 μB at T = 76 K.  相似文献   

2.
Magnetic susceptibility, specific heat and 133Cs magnetic resonance measurements in a single crystal of CsNiBr3 are reported. The data reveal two magnetic transitions separating the paramagnetic phase from the antiferromagnetic ground state. At the higher transition temperature TN2 = (14.25 ± 0.05)K a net magnetic moment is observed only along the hexagonal c-axis, while only below the lower transition temperature TN1 = (11.75 ± 0.05)K a perpendicular component of the magnetic moment appears also. Above TN2 CsNiBr3 can be described as a one-dimensional antiferromagnet with intrachain exchange interaction JkB = ?(17.0 ± 0.2)K and single-ion anisotropy constant DkB ? ?1.5K. Below TN1, the data are consistent with the non-colinear triangular structure of the Ni2+ moments proposed previously for the isomorphic crystal CsNiCl3. A reduced value of the zero-temperature susceptibility over the classical value is found and atrributed to the zero point deviations.  相似文献   

3.
Neutron powder diffraction has been used to investigate the crystal and magnetic structure of the ionic ferromagnet Cs2CrCl4, Tc ~ 58K. Data taken at ambient temperature, 78 and 4.2K indicate the structure remains tetragonal I4mmm at low temperatures. A ferromagnetic alignment of the spins is confirmed. The ordered moment at 4.2K is found to be 4.1 ± 0.2μB, and the best agreement between the calculated profile and the data suggests its direction lies at an angle of 56 ± 6° to the unique axis.  相似文献   

4.
Ternary silicides (RE, U, Th)Pt2Si2 have been prepared from the elements. All the compounds (RE= Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and U, Th) were found to be isotypic and crystallize with the primitive tetragonal CePt2Si2-type structure closely related to the CaBe2Ge2-type. The magnetic properties of these alloys were studied in the temperature range 1.5 K < T < 1100 K and in fields up to 1.3 T revealing a typical Van Vleck paramagnetism of free RE3+-ions for temperatures T > 200 K. A nonmagnetic ground state is reflected from the magnetic susceptibility data of CePt2Si2, which are interpreted in terms of interconfiguration fluctuations (ICF). The magnetic results of SmPt2Si2 (μeff = 0.7 BM) compare well with the ideal Van Vleck behavior of Sm3+ ions with a J = 52 ground state and a low-lying excited first level J = 72. At temperatures below 40 K antiferromagnetic ordering is found for (Gd, Tb, U)Pt2Si2; whereas in case of (Dy, Ho, Er, Tm)Pt2Si2 the onset of ferromagnetism is indicated below 4 K. None of the samples exhibited a superconducting transition above 1.8 K.  相似文献   

5.
The compound BaCaFe4O8 crystallizes in the trigonal space group P31m with one formula unit per unit cell with lattice constants a = 5.4059 A and c = 7.7023 A Neutron diffraction measurements carried out on a powder sample over the temperature range 300–900 K showed that the compound undergoes a magnetic transition to an antiferromagnetic state at a Néel temperature TN = 680 ± 5 K. Analysis of the room temperature neutron diffraction pattern gave a magnetic unit cell that has the same periodicty as the crystallographic one. An antiferromagnetic model is proposed with the iron spin magnetic moments parallel to the c-axis of the unit cell. The magnetic moment of the Fe3+ ion was found to be (4.5 ± 0.1)μB  相似文献   

6.
The heat capacity of (C6H11NH3) CuCl3 (CHAC) has been measured for 0.45 < T < 60 K. Three-dimensional ordering is observed at T = 2.214 K. The data in the paramagnetic region can be described by a ferromagnetic S = 12 Heisenberg linear chain model system with J/k = +45 ± 5K.  相似文献   

7.
The crystal field levels of the Er (J = 152) ion in a single crystal of ErSb have been measured by inelastic neutron scattering. The crystal field parameters obtained by a least squares fit to the spectra at several temperatures are: B4 = (0·473 ± 0·005) × 10?2°K and B6 = (0·59 ± 0·06) × 10?5°K, which differ considerably from the values o by interpolation from measurements on other compounds. In addition the temperature dependence of the magnetic scattering in the vicinity of the Néel temperature (TN = 3·55°K) clearly demonstrates that the transition is second order in contrast to the first order behavior suggested by specific heat measurements. Also, any lattice distortion accompanying the magnetic ordering is less than 0.1 per cent, the resolution of the present experiment.  相似文献   

8.
The magnetic structure of the tetragonal ErCo2Si2 compound is determined by neutron diffraction on powder sample at 4.2 K. The magnetic ordering is connected with a symmetry lowering, magnetic space group P2s1 (Sh72)k = 000. The structure is collinear antiferromagnetic with the erbium magnetic moments making an angle of 56.2° with the c axis. The magnetic moment value for erbium is 6.75μB.  相似文献   

9.
The detailed dependence of the magnetic ordering temperature θ on Gd concentration n below ~ 15 at.% Gd substitution for La is reported for the system (LaGd) Al2. In this concentration range, the θ vs.n curve lies markedly below the extrapolation of the linear behavior previously observed for concentrations ? 20 at.% Gd, and apparantely goes to zero at a finite concentration. The effective moment of Gd is enhanced by 1 μB over the free ion value.  相似文献   

10.
Intermetallics crystallizing in ThMn12 type structure were investigated. Magnetostatic measurements showed that the magnetic ordering temperature and the magnetic moment of YFe6Al6 samples depend strongly on thermal and mechanical treatment. These measurements for a powdered sample of YFe6Al6 showed that the alloy was a ferromagnet with a Curie temperatureT C =265 K and a magnetic moment μ=5.1 μB/f.u. at 77.4 K. From X-ray, magnetostatic and Mössbauer effect measurements it appears that the Fe atoms prefer the 8j and 8f crystallographic positions. Magnetostatic measurements for a powdered sample of DyFe6Al6 showed that this alloy was a ferrimagnet with the ordering temperatureT 0=311 K and magnetic moment μ=1.1 μB/f.u. at 77.4 K.  相似文献   

11.
We report here our magnetic study on amorphous GdxY1?x alloys with x = 0.17 and 0.70. The alloy with x = 0.17 is paramagnetic down to 4.2 K. For x = 0.70, magnetization shows a peak in low magnetic fields (H < 0.3 T). Magnetic saturation is difficult to obtain even for fields up to 15 T. An extrapolated value gives a moment of 6.2 μBGd at. Tc is about 70 K. This led us to the conclusion that ferromagnetic and antiferromagnetic clusters are present in this alloy. The results are discussed by comparing them with crystalline Gd-Y alloys and amorphous Gd-Al, Gd-Au, etc. The effect of Y seems to be specific.  相似文献   

12.
Accumulating evidence for a two-step magnetic ordering in the borocarbide DyNi2B2C is summarized, including earlier overlooked evidence for the initial magnetic transition and a recent magnetization study of polycrystalline samples. The two-step ordering involves initial two-dimensional ferromagnetic ordering in the DyC (basal) planes at TN (=16.3 K), gradual build-up of the three-dimensional (3D) alternate stacking of ferromagnetic planes, and a final 3D ordering in the AF–I-related structure at a lower temperature To (=10.4 K), depicting a first-order transition. Supporting evidence for the two-step magnetic ordering in DyNi2B2C comes from point-contact spectroscopy measurements in the normal state for DyNi2B2C–Ag contact, and from similar behaviour of PrNi2B2C and (Pr0.91Dy0.09)Ni2B2C. In the isostructural borocarbide DyCo2B2C the two magnetic transitions (at 7.8 and 2.6 K) deduced from the specific-heat measurements are also attributed to a two-step magnetic ordering.  相似文献   

13.
The solid solutions Cr1?xVxN show at low temperatures a progressive establishment of an orthorhombic distorsion and an antiferromagnetic order (of the fourth kind) for x < 13 accompagnied by a (cubic) fraction which remains disordered at the lowest temperatures : No ordering occurs for x > 13. Assuming a Gaussian distribution of local concentrations in otherwise homogeneous cells (cellular model), the mean magnetic moment, measured by neutron diffraction can be related to a constant moment of Cr provided the local vanadium concentration is smaller than 0.26. The cell size contains 20 metal atoms.  相似文献   

14.
The structure and orientational ordering of nitrogen molecules physisorbed on graphite have been studied by low-energy diffraction (LEED). A two-sublattice in-plane herringbone structure with glide lines along two perpendicular directions is inferred from LEED patterns at T < 30 K from the monolayer where the molecular centers have the commensurate (3 × 3) 30° structure. The orientational order-disorder transition of this commensurate phase was examined by superlattice spot intensity and angular profile measurements for 20 < T < 38 K. A rapid drop in superlattice intensity is observed near 27 K. The persistence of some intensity to 38 K. is suggestive of residual short-range orientational ordering and perhaps finite size or heterogeneity effects. For increasing coverage at T = 15 K, there is first a transition to a previously unobserved uniaxial incommensurate phase and then a transition to an apparently triangular incommensurate phase. The orientational superlattice spots are clearly present in the uniaxial phase, but are much weaker in the triangular incommensurate phase. At 31 < T < 35 K, an apparently triangular incommensurate phase with no detectable orientational superlattice spots is observed. The lattice constant versus equilibrium vapor pressure curve has been determined in the latter case assuming a continuous transition. The lattice constants of the incommensurate phases are used to place limits on the extent of possible phase-coexistence regions between the commensurate, uniaxial incommensurate, and triangular incommensurate phases. The LEED patterns from the bilayer at T = 15 K indicate a double-period superlattice structure of the triangular incommensurate phase which does not have the glide line symmetries of the commensurate monolayer. Some effects of heterogeneity on these phase transitions are discussed. A phase diagram for 10 < T < 40 K is proposed.  相似文献   

15.
Quasielastic neutron scattering experiments on TMNB show for T > 2.8 K a diffraction pattern characteristic for a 1-D ferromagnet with an exchange energy along the chain J/kB ? 10 K. For T < TN =2.7 K the 3-D magnetic ordering was found to be of a simple antiferromagnetic type. A lattice distortion was observed as well below 200 K.  相似文献   

16.
The electrical resistance of a linear chain metal Nb3Te4 were measured from 1.3 to 320 K. The residual resistance ratio R(300 K)R(4.2 K) is about 3. Nb3Te4 shows an anomaly in the resistivity vs temperature at about 80 K, suggesting an occurrence of a charge-density-wave transition. The transverse and longitudinal magnetoresistance at 4.2 K are proportional to the magnetic field in the range of 2–58 kOe. In the superconducting region close to the transition temperature Tc, the critical magnetic field Hc2 is proportional to δT=Tc?T. The angular dependence of Hc2 fits well with the fluxoid model of the Ginzburg-Landau theory. The ratio of the critical fields parallel and perpendicular to the chain direction is 4.8.  相似文献   

17.
Magnetic structure amplitudes of 170 reflections up to sin θλ = 1.0 A??1 were measured by polarized neutron diffraction at T = 295K on yttrium iron garnet. The data set was completed by model calculations and the magnetization density was determined. The magnetic moments obtained by integration and refinement are considerably reduced on both iron sites due to charge density transferred from intervening ligand ions. A residual moment of uncancelled spin of (0.032 ±0.004) μB is observed on the oxygen ion. Evidence for magnetization density on the oxygen atom and between oxygen and tetrahedral iron was found. A qualitative discussion in terms of a molecular orbital model is given. A further data set collected at 4.2K showed equally a magnetic moment lower than expected for the free ion.  相似文献   

18.
The origin of localized magnetic moments formation in metals is investigated theoretically using a self-consistent local spin density molecular cluster approach. Clusters with up to 55 atoms are employed to describe isolated impurity local moment behavior in the cases of FeAg and FePd. Densities of states and spin magnetic moments were determined and compared with results of spectroscopic (notably photoemission) and magnetization measurements, respectively. In the case of a noble metal host, the spin magnetization density is found to be highly localized around the Fe site; the iron moment is ≈ 3.9μB and the polarization of the host Ag atoms is small. In the case of a transition metal host, the iron moment is ≈ 3.2 μB but here the strong hybridization of the Fe-3d and Pd-4d states results in a large induced magnetic moment in the host PD metal — in essential agreement with experiment for this giant moment system.  相似文献   

19.
Magnetization experiments have shown that at low temperature and in an applied magnetic field of ~90 kOe antiferromagnetic (AF) uranium arsenide transforms to a new ferrimagnetic state. The high-field transition produces a state with magnetic components parallel to the applied field. A small ferromagnetic component (0.4 μB) is seen in magnetization experiments but with neutron diffraction we have observed directly the large AF component (~ 1.8 μB) which has a q value of 0.58 ± 0.01 c1 in contrast to the zero field type IA structure with q = (0,0,0.50). This transition is quite different from that occuring in the conventional spin-flop transition.  相似文献   

20.
The magnetic properties of CuCr2Se4 single crystals, which were grown by chemical transport reactions using iodine as a carrier, have been investigated. The magnetic moment at 0 K is found to be 5.07 μB per mole. The susceptibility at high temperatures follows a Curie-Weiss law with an asymptotic Curie temperature 430 K and a Curie constant 2.55 emu · degmol. The magnetocrystalline anisotropy constants K1 and K2 are ? 6.9x 105 and ? 0.9x 105ergcm3, respectively, at 5.1 K.In order to examine the effects of annealing on the magnetocrystalline anisotropy, the ferromagnetic resonance at room temperature was measured after annealing in vacuum and subsequently in an atmosphere of Se. It is found that the absolute values of K1 and K2 decrease after annealing in vacuum and increase to the initial values after annealing in an atmosphere of Se.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号