首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Hyperfine interaction frequencies of 1H and 39K nuclei near the AsO4-4 radical in X-ray irradiated KH2AsO4 (KDA) have been observed through the method of electron spin echo envelope modulation (ESEEM). This method enabled us to record nuclear hyperfine interaction (ENDOR-like) spectra around the ferroelectric phase transition of KDA for the first time. The ESEEM spectrum of 39K exhibits a clear change when passing the ferroelectric phase transition temperature, but that of close protons does not. The result for close protons is in agreement with the symmetry breaking of the AsO4-4 site as observed via the EPR spectrum [5]. Finally, at 4.2 K the hyperfine interaction parameters of a 39K nucleus near the AsO4-4 unit could be determined through the ESEEM method.  相似文献   

2.
Separate measurements of the A1(TO) and A1(LO) Raman spectra of ferroelectric gadolinium molybdate at 80°K and above have elucidated the origin of the anomalous temperature dependence of the two lowest frequency lines in the A1(TO) spectrum. The observed behavior is postulated to be the result of coupling among modes at 44.5, 51.5, and 83 cm?1 (at 80°K). The 44.5 and 83 cm?1 modes become the degenerate, soft zone-boundary modes of the paraelectric phase while the 51.5 cm?1 mode changes to B2 symmetry. The two lowest frequency lines are the same as those observed previously in i.r. absorption.  相似文献   

3.
Polarized Raman spectra of CdTiO3 single crystals are recorded for the first time over the frequency range 5 < ν < 1000 cm?1 at temperatures of 10 to 1200 K. The emphasis was on the low-frequency range, where an anomalous temperature dependence of a few phonon modes was observed. At high temperatures, four phonon modes exhibiting a behavior typical of soft modes were found to exist. These phonon modes are assumed to restore the cubic symmetry of the lattice. Their extrapolated temperature dependences suggest that there exists a sequence of three hypothetical high-temperature phase transitions analogous to those observed in the genuine perovskite CaTiO3. At temperatures below 78 K, the Raman spectrum exhibits new lines associated with polar distortions of the unit cell. At low frequencies, three lines are observed whose parameters exhibit an anomalous behavior typical of soft modes in a ferroelectric phase. Several different polar states are assumed to exist at low temperatures.  相似文献   

4.
Optical Raman spectra of a ferroelectric sodium nitrite crystal have been detected in a wide spectrum range at various temperatures, including the region of the ferroelectric phase transition. A manifestation of a transverse soft polar mode of the A 1(z) type responsible for the ferroelectric phase transition has been discovered in the spectrum at room temperature. This mode has been found to become overdamped even far from the ferroelectric phase transition temperature. This mode also appears as a central peak under heating. It has been found that the pseudoscalar mode of the A 2 type has the highest intensity in the Raman spectrum of sodium nitrite. The frequency corresponding to the maximum intensity of this mode in the Raman spectrum varies from 130 cm–1 at 123 K to 106 cm–1 at T = 513 K. A fair agreement of the experimental data for the A 1(z) mode with the Lyddane–Sachs–Teller relation has been established. The polariton curves for the A 1(z) polar mode and the dispersion curves for axinons has been plotted.  相似文献   

5.
We have performed dielectric and micro-Raman spectroscopy measurements in the 298–673 K temperature range in polycrystalline Pb0.50Sr0.50TiO3 thin films prepared by a soft chemical method. The phase transition have been investigated by dielectric measurements at various frequencies during the heating cycle. It was found that the temperature corresponding to the peak value of the dielectric constant is frequency-independent, indicating a non-relaxor ferroelectric behavior. However, the dielectric constant versus temperature curves associated with the ferroelectric to paraelectric phase transition showed a broad maximum peak at around 433 K. The observed behavior is explained in terms of a diffuse phase transition. The obtained Raman spectra indicate the presence of a local symmetry disorder, due to a higher strontium concentration in the host lattice. The monitoring of some modes, conducted in the Pb0.50Sr0.50TiO3 thin films, showed that the ferroelectric tetragonal phase undergoes a transition to the paraelectric cubic phase at around 423 K. However, the Raman activity did not disappear, as would be expected from a transition to the cubic paraelectric phase. The strong Raman spectrum observed for this cubic phase is indicative that a diffuse-type phase transition is taking place. This behavior is attributed to distortions of the perovskite structure, allowing the persistence of low-symmetry phase features in cubic phase high above the transition temperature. This result is in contrast to the forbidden first-order Raman spectrum, which would be expected from a cubic paraelectric phase, such as the one observed at high temperature in pure PbTiO3 perovskite. PACS 78.30.-j; 77.80.Bh; 64.70.Kb; 68.55.-a; 77.22.-a; 77.55.+f  相似文献   

6.
《Infrared physics》1992,33(4):307-312
The infrared (IR) reflectivity spectrum of KH2PO4, polarized along the c axis, has been carefully reinvestigated in the vicinity of the phase transition temperature and in the ferroelectric phase, between 10 and 600 cm−1. Two new results are displayed by the present study of the A1, spectrum in the ferroelectric phase of KH2PO4: first, the activity of the expected A1 librational lattice mode is evidenced, the lattice mode parameters of this mode were never previously determined by IR spectroscopy in KH2PO4; and second, the peculiar behaviour of the broad reflection band corresponding to the A1 translational lattice mode is observed for the first time in KH2PO4, and discussed.  相似文献   

7.
G. Koch  H. Happ 《Annalen der Physik》1993,505(6):522-534
The far-infrared reflection spectra of betaine phosphite single crystals in the three crystallographic directions are investigated in the range from 5 to 600 cm?1 at temperatures between 203 and 323 K using a dispersive Fourier spectrometer. The dielectric function is evaluated from the complex amplitude reflection coefficient measured. In the spectrum polarized along the ferroelectric direction a soft mode of relaxation type is observed which accounts for a large part of the relevant static dielectric constant at Tc = 210 K. Among the oscillator modes, which generally exhibit normal temperature dependence, there is a heavily overdamped mode at 58 cm?1, polarized along the crystallographia a1 axis, with anomalous damping behaviour. The damping constant decreases nearly linearly with temperature up to 323 K which is close to T = 355 K where a second phase transition is known to exist.  相似文献   

8.
Optical properties (absorption and photoluminescence) of PbHPO4 single crystals have been performed in the range 100 – 350 K, spanning the transition temperature (TC=310 K). An intrinsic luminescene band centered at 450 nm has been observed. The excitation spectrum for this emission shifts with temperature in the ferroelectric phase. The temperature dependence for this shift has been determined as E(T) T, for T<TC. Similar behaviour had been observed in birrefringence measurements (performed by other authors), which yield n T PS2 (spontaneous polarization). The results show that the flourescence is very useful, as an alternative technique, to study the dynamics of the phase transitions.  相似文献   

9.
X-band electron paramagnetic resonance (EPR) investigations of single crystals of Cr3+-doped dimethylammonium aluminium sulphate hexahydrate are presented from 100 K to room temperature. The crystal undergoes a phase transition at 152 K from the ferroelastic to the ferroelectric phase. The spin-Hamiltonian parameters have been determined for both phases. The spin-Hamiltonian parameters in the ferroelectric phase are:g=1.980±0.003,b 2 0 =(1140±15)·10?4 cm?1,b 2 2 =(214±10)·10?4 cm?1. Remarkable EPR line width changes confirm the order-disorder character of the ferroelectric phase transition on a microscopic level and demonstrate that the dimethylammonium reorientation freezing-out is the prime reason for this transition.  相似文献   

10.
Dielectric and Raman scattering experiments were performed on polycrystalline Pb1-xCaxTiO3 thin films (x=0.10, 0.20, 0.30, and 0.40) as a function of temperature. The results showed no shift in the dielectric constant (K) maxima, a broadening with frequency, and a linear dependence of the transition temperature on increasing Ca2+ content. On the other hand, a diffuse-type phase transition was observed upon transforming from the cubic paraelectric to the tetragonal ferroelectric phase in all thin films. The temperature dependence of Raman scattering spectra was investigated through the ferroelectric phase transition. The temperature dependence of the phonon frequencies was used to characterize the phase transitions. Raman modes persisted above the tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive. The origin of these modes was interpreted in terms of a breakdown of the local cubic symmetry due to chemical disorder. The lack of a well-defined transition temperature and the presence of broad bands in some temperature interval above the FE–PE phase transition temperature suggested a diffuse-type phase transition. This result corroborates the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in these thin films. PACS 77.80.Bh; 77.55.+f; 78.30.-j; 77.80.-e; 68.55.-a  相似文献   

11.
The satellite NMR spectrum of 23Na in ammonium Rochelle salt (NaNH4C4H4O6 ? 4H2O) is investigated near the transition temperature. Each line in the paraelectric phase splits discontinuously into four lines at the transition temperature; this fact is compatible with the first-order phase transition and reveals the existence of the superstructure in the ferroelectric phase.  相似文献   

12.
A calorimetric study performed on the ferroelectric K2SeO4 in the 48K–800K temperature range confirmed the existence of three phase transition and revealed the occurrence of a new one at 56.03±0.05K (TIVc). The critical measurements for the commensurate-incommensurate phase transition seem to show a cross-over behaviour.  相似文献   

13.
Second-harmonic generation in the ternary layered semiconductor TlInS2 excited with the wavelength λ = 1.06 μm of YAG: Nd3 + laser is investigated in the temperature range corresponding to the low-temperature phase transitions. It is shown that the intensity of the second-harmonic signal corresponding to the non-linear coefficients deff, d21, d22 reveals peculiarities close to the commensurate-incommensurate phase transitions. The temperature hysteresis of the second-harmonic signal in the low-temperature region (below and close to Ti2 = 206K) is explained assuming that an incomplete lock-in transition in TlInS2 takes place at Tc1 =204K within the temperature range between a ferroelectric (Tc2 = 201K) and an incommensurate (Ti2 = 206 K) phases. It is shown that the monoclinic point group symmetry C2 is preserved also at temperatures lower than the phase transition temperature Tc4 = 79K to a weak ferroelectric state.  相似文献   

14.
The infrared reflectivity of Cd2Nb2O7 single crystal was studied in the temperature interval of 10-540 K, together with complementary dielectric measurements. A ferroelectric soft mode was revealed above the ferroelectric phase transition at T c = 196 K coupled with a central-mode type dispersion in the near-millimetre range. This proves the mixed displacive and order-disorder nature of the transition. Below T c many new modes were detected due to lowering of the symmetry, especially below the previously suggested incommensurate transition at 85 K. Discussion of the possible phase transitions based on symmetry considerations is presented with the conclusion that the ferroelectric transition is proper with the F1u symmetry of the order parameter, whereas the intermediate ferroelastic transition is improper and triggered by the coupling with the ferroelectric order parameter. Received 17 July 2000  相似文献   

15.
The effect of the substitution of Co2+, Mn2+, and Zn2+ ions for Ni2+ ions on the magnetic, dielectric, and ferroelectric properties of vanadate single crystals (Ni1 − x T x )3V2O8 has been analyzed. It has been found that the low-level (x ≤ 0.1) substitution of both magnetic and nonmagnetic ions stabilizes the ferroelectric state with a cycloidal magnetic structure. The existence region of this state is expanded to low temperatures down to 3 K for Zn2+ and below 1.8 K for Co2+ and Mn2+ owing to the suppression of a low-temperature weak ferromagnetic phase. At the same time, the ferroelectric phase disappears completely at large concentrations of Co and Mn. The effect of magnetic fields on the magnetic and ferroelectric states has been analyzed. It has been shown that the magnetic field along the c axis suppresses the ferroelectric state, whereas the magnetization along the antiferromagnetism axis (a axis) induces the reentrant phase transition from a paraelectric weak ferromagnetic structure to a ferroelectric structure. The corresponding H-T phase diagrams have been drawn.  相似文献   

16.
We report on the ac dielectric permittivity (ε) and the electric conductivity (σω), as function of the temperature 300?K?T4IO3. The main feature of our measured parameters is that, the compound undergoes a ferroelectric phase transition of an improper character, at (368?±?1)K from a high temperature paraelectric phase I (Pm21 b) to a low temperature ferroelectric phase II (Pc21n). The electric conduction seems to be protonic. The frequency dependent conductivity has a linear response following the universal power law (σ( ω )?=?A(T s (T)). The temperature dependence of the frequency exponent s suggests the existence of two types of conduction mechanisms.  相似文献   

17.
The phonon spectrum of cubic cadmium metastannate and parameters of the crystal structure of its distorted phases were calculated from first principles within the density functional theory. It is shown that the phonon spectrum and the energy spectrum of the distorted phases in α-CdSnO3 resemble surprisingly the corresponding characteristics of CdTiO3. The ground state of α-CdSnO3 is the ferroelectric Pbn21 phase, the energy gain from the phase transition to this phase from the nonpolar phase Pbnm is ∼30 meV, and the spontaneous polarization is 0.25 C/m2. The analysis of the eigenvector of the ferroelectric mode in α-CdSnO3 and the partial densities of states indicates that the ferroelectric instability in this crystal, which does not contain transition d-element atoms, is associated with the formation of a covalent bonding between Cd and O atoms.  相似文献   

18.
P. Czarnecki 《Phase Transitions》2013,86(9-10):801-805
The phase transitions in ferroelectric pyridinium tetrafluoroborate (PyBF4) and pyridinium perchlorate (PyClO4) have been characterized by structural studies. The continuous ferroelectric phase transition at 238.7 K in PyBF4 appears to be a unique case for multiaxial ferroelectrics, while the first order phase transition in PyClO4 at 248 K is consistent with the Landau theorem for deducing the character of phase transitions from symmetry considerations. The phase transition in both materials is caused by ordering of the pyridinium cation as well as tetrahedral anions.  相似文献   

19.
Abstract

The paper reviews the results of experimental and theoretical studies of ferroic phase transitions in β-LiNH4SO4 and its deuterated analogue. β-LiNH4SO4 undergoes succesive phase transitions: a paraelectric - ferroelectric phase transition at T1 ? 462 K, a ferroelectric - ferroelastic phase transition at T2 ? 283 K and a transition from one ferroelastic phase to the other at T3 ? 28 K. Attention is focused on the influence of the order of phase transitions on the pattern of ferroelectric and ferroelastic domain structure, and also on the role played by the dynamics of molecular groups in the mechanism of transitions. The pre-transition effect connected with the ferroelectric-paraelectric transition: heterophase, capable of accounting for anomalies in different physical properties present 1-3 K below T1 is shown. The anomalous temperature variation of spontaneous polarisation of the crystal is discussed within the framework of the phenomenological model of weak ferroelectrics.  相似文献   

20.
Raman spectroscopy at both 298 and 77 K has been used to study a series of selected natural smithsonites from different origins. An intense sharp band at 1092 cm−1 is assigned to the CO32− symmetric stretching vibration. Impurities of hydrozincite are identified by a band around 1060 cm−1. An additional band at 1088 cm−1 which is observed in the 298 K spectra but not in the 77 K spectra is attributed to a CO32− hot band. Raman spectra of smithsonite show a single band in the 1405–1409 cm−1 range assigned to the ν3 (CO3)2− antisymmetric stretching mode. The observation of additional bands for the ν3g modes for some smithsonites is significant in that it shows distortion of the ZnO6 octahedron. No ν2 bending modes are observed for smithsonite. A single band at 730 cm−1 is assigned to the ν4 in phase bending mode. Multiple bands be attributed to the structural distortion are observed for the carbonate ν4 in phase bending modes in the Raman spectrum of hydrozincite with bands at 733, 707 and 636 cm−1. An intense band at 304 cm−1 is attributed to the ZnO symmetric stretching vibration. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号