首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 623 毫秒
1.
Alternated deposition of polyanions and polycations on a charged solid substrate leads to the buildup of polyelectrolyte multilayer (PEM) films. Two types of PEM films were reported in the literature: films whose thickness increases linearly and films whose thickness increases exponentially with the number of deposition steps. However, it was recently found that, for exponentially growing films, the exponential increase of the film thickness takes place only during the initially deposited pairs of layers and is then followed by a linear increase. In this study, we investigate the growth process of hyaluronic acid/poly(L-lysine) (HA/PLL) and poly(L-glutamic acid)/poly(allylamine) (PGA/PAH) films, two films whose growth is initially exponential, when the growth process enters the linear regime. We focus, in particular, on the influence of the molecular weight (Mw) of the polyelectrolytes. For both systems, we find that the film thickness increment per polyanion/polycation deposition step in the linear growth regime is fairly independent of the molecular weights of the polyelectrolytes. We also find that when the (HA/PLL)n films are constructed with low molecular weight PLL, these chains can diffuse into the entire film during each buildup cycle, even for very thick films, whereas the PLL diffusion of high molecular weight chains is restricted to the upper part of the film. Our results lead to refinement of the buildup mechanism model, introduced previously for the exponentially growing films, which is based on the existence of three zones over the entire film thickness. The mechanism no longer needs all the "in" and "out" diffusing polyanions or polycations to be involved in the buildup process to explain the linear growth regime but merely relies on the interaction between the polyelectrolytes with an upper zone of the film. This zone is constituted of polyanion/polycation complexes which are "loosely bound" and rich in the polyelectrolyte deposited during the former deposition step.  相似文献   

2.
Polyelectrolyte multilayer (PEM) films with array of responsive microchambers are promising candidates for site-specific release of chemicals in small and precisely defined quantities on demand. It requires effective sealing of the microchambers toward a support to prevent leakage of a cargo. In this paper, we study the pressure-induced adhesion of poly(allylammonium)-poly(4-styrenesulfonate) (PAH-PSS) multilayers assembled on different templates toward the poly(4-styrenesulfonate)-poly(diallyldimethylammonium) multilayer. The tensile bond strength increases from 0.4 to 3.5 MPa upon the increase of PAH-PSS bilayers from 10 to 40, if assembled on a silicon template. Weaker tensile bond strength of 0.35 MPa between the PAH-PSS multilayer and a poly(methylmethacrylate) (PMMA) template results in adhesive break at this interface and allows mechanical removal of the template. The successful PEM transfer is demonstrated for templates of various geometrical patterns, while the tensile break of a multilayer film happens for the others.  相似文献   

3.
The formation ofpolysaccharide films based on the alternate deposition of chitosan (CHI) and hyaluronan (HA) was investigated by several techniques. The multilayer buildup takes place in two stages: during the first stage, the surface is covered by isolated islets that grow and coalesce as the construction goes on. After several deposition steps, a continuous film is formed and the second stage of the buildup process takes place. The whole process is characterized by an exponential increase of the mass and thickness of the film with the number of deposition steps. This exponential growth mechanism is related to the ability of the polycation to diffuse "in" and "out" of the whole film at each deposition step. Using confocal laser microscopy and fluorescently labeled CHI, we show that such a diffusion behavior, already observed with poly(L-lysine) as a polycation, is also found with CHI, a polycation presenting a large persistence length. We also analyze the effect of the molecular weight (MW) of the diffusing polyelectrolyte (CHI) on the buildup process and observe a faster growth for low MW chitosan. The influence of the salt concentration during buildup is also investigated. Whereas the CHI/HA films grow rapidly at high salt concentration (0.15 M NaCl) with the formation of a uniform film after only a few deposition steps, it is very difficult to build the film at 10(-4) M NaCl. In this latter case, the deposited mass increases linearly with the number of deposition steps and the first deposition stage, where the surface is covered by islets, lasts at least up to 50 bilayer deposition steps. However, even at these low salt concentrations and in the islet configuration, CHI chains seem to diffuse in and out of the CHI/HA complexes. The linear mass increase of the film with the number of deposition steps despite the CHI diffusion is explained by a partial redissolution of the CHI/HA complexes forming the film during different steps of the buildup process. Finally, the uniform films built at high salt concentrations were also found to be chondrocyte resistant and, more interestingly, bacterial resistant. Therefore, the (CHI/HA) films may be used as an antimicrobial coating.  相似文献   

4.
We have investigated the activity of counter-ions at 60 degrees C through the osmotic coefficient K in solutions of anionic and cationic polyelectrolyte complexes of variable compositions. For excess of polyanion in the complexes (molar fraction of polycation f < 0.5), K increases as the polyanion is neutralized by the polycation (f getting closer to 0.5). By contrast, for an excess of polycation (f > 0.5), K stays constant or even slightly decreases as the polycation is getting neutralized by the polyanion. This asymmetric behavior depending on the charge of the complexes indicates that the globally negatively charged complexes are homogeneous and can be treated as a single polyelectrolyte of reduced linear charge density. On the other hand, the positively charged complexes show a micro-phase separation between neutral fully compensated microdomains and domains where the excess polycation is locally segregated. These two different microstructures are reminiscent of the coacervation and segregation regimes observed at higher concentrations and salinities, and also of polyelectrolyte complexes with oppositely charged surfactants. This interpretation is supported by two simple predictive models.  相似文献   

5.
The deposition of polyelectrolyte multilayer films (PEMs) appears more and more as a versatile tool to functionalize a broad range of materials with coatings having controlled thicknesses and properties. To increase the control over the properties of such coatings, a good knowledge of their deposition mechanism is required. Since Cohen Stuart et al. (Langmuir 18 (2002) 5607-5612) showed that the adsorption of one polyelectrolyte could induce desorption of polyelectrolyte complexes instead of regular deposition, more and more findings highlight peculiarities in the deposition of such films. Herein we demonstrate that the association of sodium polyphosphate (PSP) as the polyanion and either poly(-L-lysine hydrobromide) (PLL) or poly(allylamine chloride) (PAH) as the polycations may lead to non-monotonous film deposition as a function of time. Complementary, films containing PSP and PLL can be obtained from a (PLL-HA)(n) template films after the exchange of HA (hyaluronic acid) from the sacrificial template by PSP from the solution. This exchange is accompanied by pronounced film erosion. However, when starting from a (PAH-HA)(n) template, the film erosion and exchange due to the contact with PSP is by far less pronounced, nevertheless the film morphology changes. These findings show that the nature of the polycation used to deposit the PEM film may have a profound influence of the film's response to a competing polyanion.  相似文献   

6.
We report on the formation of the polycation/dye/polyanion (PC/D/PA) complexes by the interaction between nonstoichiometric polycation/dye (PC/D) complexes with polyanions. Polycations differed in their content of the (N,N‐dimethyl‐2‐hydroxypropylene ammonium chloride) units in the main chain. Poly(sodium acrylate) (NaPA), poly(sodium 2‐acrylamido‐2‐methylpropane sulfonate) (NaPAMPS) and poly(sodium styrenesulfonate) (NaPSS) were used as polyanions. Crystal Ponceau 6R (CP6R) and Ponceau 4R (P4R) with two or three sulfonic groups were used as anionic dyes. The interaction between nonstoichiometric PC/D complexes and polyanions was followed by UV‐VIS spectroscopy, viscometry, and conductometry measurements. Formation of PC/D/PA complexes takes place mainly by the electrostatic interaction between the polyanion and the free positive charges of the nonstoichiometric PC/D complex. The stoichiometry and the stability of the tricomponent complexes depended on the polycation structure, the structure and molecular weight of polyanion, the dye structure, and the P/D molar ratio. A high amount of the dye was excluded from the complex before the end point when a branched polycation was used. The higher the solubility of the dye the lower the stability of the PC/D/PA complexes. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 409–418, 1999  相似文献   

7.
The influence of common cationic surfactants on the physical properties of differently composed polyelectrolyte films prepared by the layer-by-layer (LbL) technology was investigated. Free-standing polyelectrolyte films as microcapsules showed a fast, strong response to the addition of less than 1 mM cationic surfactant cetyltrimethylammonium bromide (CeTAB). As a function of the polyelectrolyte composition, the behavior of the capsules varied from negligible changes to complete disintegration via strong swelling. The response of microcapsules consisting of (poly(allylamine hydrochloride)(PAH)/poly(styrene sulfonate)(PSS))(4) was associated with a 5-fold volume increase, a fast switch of permeability, and in the case of fluorescently labeled films a 4-fold increase in fluorescence intensity. The kinetics and strengths of the interaction process were investigated by confocal laser scanning microscopy (CLSM) and fluorescence spectroscopy. Also, the relative stabilities of the polycation/polyanion and surfactant/polyanion complexes were determined. A mechanism was suggested to explain the interactions between the cationic surfactants and polyelectrolyte capsules. The strong response can be exploited in potential applications such as the triggered release of drugs or other encapsulated materials, the fluorescence-based detection of cationic detergents, and a switchable stopper in microchannels. However, the high sensitivity of LbL films to traces of cationic surfactants can also limit their applicability to the encapsulation of drugs or other materials because pharmaceutical or technical formulations often contain cationic surfactants as preservatives such as benzalkonium salts (BAC). It was demonstrated that undesired capsule opening can be effectively prevented by cross-linking the polyelectrolyte multilayers.  相似文献   

8.
The formation of polyelectrolyte multilayers (PEMs) is investigated using a silicon-on-insulator based thin film resistor which is sensitive to variations of the surface potential. The buildup of the PEMs at the silicon oxide surface of the device can be observed in real time as defined potential shifts. The influence of polymer charge density is studied using the strong polyanion poly(styrene sulfonate), PSS, combined with the statistical copolymer poly(diallyl-dimethyl-ammoniumchloride-stat-N-methyl-N-vinylacetamide), P(DADMAC-stat-NMVA), at various degrees of charge (DC). The multilayer formation stops after a few deposition steps for a DC below 75%. We show that the threshold of surface charge compensation corresponds to the threshold of multilayer formation. However, no reversion of the preceding surface charge was observed. Screening of polyelectrolyte charges by mobile ions within the polymer film leads to a decrease of the potential shifts with the number of layers deposited. This decrease is much slower for PEMs consisting of P(DADMAC-stat-NMVA) and PSS as compared to PEMs consisting of poly(allylamine-hydrochloride), PAH, and PSS. From this, significant differences in the dielectric constants of the polyelectrolyte films and in the concentration of mobile ions within the films can be derived.  相似文献   

9.
The electrostatically driven binding dynamics of a polyelectrolyte multilayer (PEMU) film was investigated in real-time using dual-beam polarization interferometry (DPI) and independently supported by quartz crystal microbalance with dissipation monitoring (QCM-D) studies. Multilayer assemblies of the polyanions poly[1-[4[(3-carboxy-4-hydroxyphenylazo)benzenesulfonamido]-1,2-ethanediyl sodium salt] (PAZO) and poly(styrene sulfonate) (PSS) were respectively constructed with the polycation poly(ethylenimine) (PEI) on anionic functionalized substrates using the layer-by-layer electrostatic self-assembly method. DPI measurements indicate that polyelectrolyte adsorption occurs in three distinct stages. In the first stage, for approximately 5 s, coil-like segments of polyanion partially tether to the surface of the oppositely charged PEI. In the second stage, these coils unfurl over a period of approximately 10 s to cover the surface resulting in an increase in average density of the film. During the final adsorption step, the surface-bound polyelectrolyte diffuses into the multilayer assembly, exposing the surface to further deposition. This last step occurs over a much longer time period and results in a highly interpenetrated film containing a charge-overcompensated region at the film surface.  相似文献   

10.
The alternate deposition of polyanions and polycations leads to the formation of films called polyelectrolyte multilayer films (PEMs). Two types of growth processes are reported in the literature, leading to films that grow either linearly or exponentially with the number of deposition steps. In this article we try to establish a correlation between the nature of the growth process and the heat of complexation between the polyanions and the polycations constituting the PEM film. Isothermal titration microcalorimetry experiments performed on several polyanion/polycation systems seem to indicate that an endothermic complexation process is characteristic of an exponential film growth, whereas a strongly exothermic process corresponds to a linear growth regime. Finally, weakly exothermic processes seem to be associated with weakly exponentially growing films. These results thus show that exponentially growing processes are mainly driven by entropy. This explains why the exponential growth processes are more sensitive to temperature than the linear growing processes. This temperature sensitivity is shown on the poly-L-glutamic acid/poly(allylamine) system which grows either linearly or exponentially depending on the ionic strength of the polyelectrolyte solutions.  相似文献   

11.
A write-read-erasable memory device was fabricated on layer-by-layer (LbL) ultrathin films prepared from poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT-PSS) and poly(diallyldimethylammonium chloride) (PDDA). By use of current-sensing atomic force microscopy (CS-AFM), nanopatterns were formed by applying a bias voltage between a conductive tip (Pt-coated Si3N4 cantilever) in contact with the polymer film and gold substrate. The dependence of the nanopatterns on film thickness, applied bias, and writing speed was studied. Moreover, the height of the patterns was 3-5 times higher than the original thickness of the films, opening the possibility for three-dimensional nanopatterning. The ability of the patterns to be erased after nanowriting was also investigated. By comparing the I-V characteristics under ambient conditions and under N2 environment, a joule-heating activated, water meniscus-assisted anion doping mechanism for the nanopatterning process was determined. Write-read-erase memory device capability was demonstrated on the nanopatterns.  相似文献   

12.
We investigated polysaccharide films obtained by simultaneous and alternate spraying of a chitosan (CHI) solution as polycation and hyaluronic acid (HA), alginate (ALG), and chondroitin sulfate (CS) solutions as polyanions. For simultaneous spraying, the film thickness increases linearly with the cumulative spraying time and passes through a maximum for polyanion/CHI molar charge ratios lying between 0.6 and 1.2. The size of polyanion/CHI complexes formed in solution was compared with the simultaneously sprayed film growth rate as a function of the polyanion/CHI molar charge ratio. A good correlation was found. This suggests the importance of polyanion/polycation complexation in the simultaneous spraying process. Depending on the system, the film topography is either liquid-like or granular. Film biocompatibility was evaluated using human gingival fibroblasts. A small or no difference is observed in cell viability and adhesion between the two deposition processes. The CHI/HA system appears to be the best for cell adhesion inducing the clustering of CD44, a cell surface HA receptor, at the membrane of cells. Simultaneous or alternate spraying of CHI/HA appears thus to be a convenient and fast procedure for biomaterial surface modifications.  相似文献   

13.
Temperature- and pH-sensitive poly(N-isopropylacrylamide)?Cco-acrylic acid (pNIPAm-co-AAc) microgels were deposited on glass substrates coated with polyelectrolyte multilayers composed of the polycation poly(allylamine hydrochloride) (PAH) and the polyanion poly(sodium 4-styrenesulfonate) (PSS). The microgel density and structure of the resultant films were investigated as a function of: (1) the number of PAH/PSS layers (layer thickness); (2) the charge on the outer layer of the polyelectrolyte multilayer film; and (3) the pH of microgel deposition solution. The resultant films were studied by differential interference contrast optical microscopy, atomic force microscopy, and scanning electron microscopy. It was found that the coverage of the microgels on the surface was a complex function of the pH of the deposition solution, the charge on the outer layer of the polyelectrolyte thin film and the PAH/PSS layer thickness; although it appears that microgel charge plays the biggest role in determining the resultant surface coverage.  相似文献   

14.
The layer-by-layer assembly technique was used to create electrically conductive films with poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT-PSS) and branched polyethylenimine (BPEI). Titanium dioxide (TiO(2)) and carbon black were used to prevent UV-degradation of these PEDOT-PSS thin film assemblies. Film growth and conductivity were studied, while varying composition and examining the effect of UV absorbing particles on the electrical conductivity. All films showed similar initial sheet resistances, but after exposure to 365 nm UV light for 9 days (correlating to approximately 4 years of sunlight), the films containing TiO(2) were up to 250 times more conductive. Additionally, the TiO(2) containing films were 27% more optically transparent than films made with PEDOT in the absence of TiO(2). The addition of colloidal titania allows the useful life of the PEDOT films to be extended without the detrimental effects of decreased transparency. Doping the PEDOT with dimethylsulfoxide produced eight bilayer films that were almost 6 times more conductive. However, the degradation rate for the doped PEDOT films without TiO(2) was 10 times greater than the doped films with TiO(2).  相似文献   

15.
In this study, we report on the original synthesis and characterization of novel antimicrobial coatings for stainless steel by alternating the deposition of aqueous solutions of positively charged polyelectrolyte micelles doped with silver-based nanoparticles with a polyanion. The micelles are formed by electrostatic interaction between two oppositely charged polymers: a polycation bearing 3,4-dihydroxyphenylalanine units (DOPA, a major component of natural adhesives) and a polyanion (poly(styrene sulfonate), PSS) without using any block copolymer. DOPA units are exploited for their well-known ability to anchor to stainless steel and to form and stabilize biocidal silver nanoparticles (Ag(0)). The chlorine counteranion of the polycation forms and stabilizes biocidal silver chloride nanoparticles (AgCl). We demonstrate that two layers of micelles (alternated by PSS) doped with silver particles are enough to impart to the surface strong antibacterial activity against gram-negative E. coli. Moreover, micelles that are reservoirs of biocidal Ag(+) can be easily reactivated after depletion. This novel water-based approach is convenient, simple, and attractive for industrial applications.  相似文献   

16.
采用静电自组装方法在五氧化二钽(Ta2O5)介质氧化膜上制备了聚二烯丙基二甲基氯化铵(PDDA)/聚苯乙烯磺酸钠(PSS)和聚二烯丙基二甲基氯化铵/聚-3,4-乙烯二氧噻吩-聚苯乙烯磺酸钠(PEDOT-PSS)超薄膜.研究了两种自组装超薄膜在Ta2O5介质氧化薄膜上的组装特性.结果表明两种自组装膜能够稳定地组装于Ta2O5介质膜表面,并有效降低薄膜的表面粗糙度.进一步研究了两种自组装超薄膜修饰的Ta2O5电容结构的电性能.结果表明静电自组装膜对Ta2O5介质膜表面进行修饰后,有效地隔离了介质氧化膜中的缺陷,降低了电容的漏电流并提高耐电压能力;研究还发现不同厚度的超薄膜对Ta2O5电容结构的耐压特性有不同程度的影响,较厚的薄膜可以更好地提高电容的耐压能力并降低漏电流,但会增加电容的等效串联电阻(ESR).另外,在相同薄膜层数的情况下,聚合物电解质PEDOT-PSS良好的导电性能降低了复合超薄膜的电阻,使得PDDA/PEDOT-PSS修饰的电容结构ESR值较低.  相似文献   

17.
Stoichiometric and nonstoichiometric polyion complex films were prepared from poly(sodium p-styrene sulfonate) and poly(diallyl dimethyl ammonium chloride). X-ray photoelectron spectroscopy revealed that the ionic groups in the complex are more ionized than in each component polymer. Fluorescence measurements showed that the complex had a main emission peak around 300 nm, whereas the peak for its original polyanion occurred at 324 nm. With the monomer and excimer peaks of the phenyl rings taken to be at 294 and 324 nm, respectively, the ratio of excimer to monomer emission intensities increased in proportion to the mole fraction of polyanion in the observed range 0.44–0.59. There was no discontinuity at the stoichiometric composition. Furthermore, the change in peak position shows that the local aggregation of phenyl groups in the polyanion was destroyed by complexation with the polycation through Coulombic forces. These results, together with the visual observation of the transparency of the films, mean that the mixing between polyanion and polycation chains in the polyion complex is on the molecular level and that this polymer alloy is miscible.  相似文献   

18.
Polyelectrolyte film fabrication by successive spraying of polycation and polyanion solutions is described and compared to classic dipping. The poly(styrenesulfonate)/poly(allylamine) system is examined in detail. The influence of various parameters such as spraying time, polyelectrolyte concentration, and effect of film drying during multilayer construction is investigated. It is found that film deposition by spraying is easily controlled and very reliable. The thickness of the multilayers grows linearly with the number of deposition cycles similarly to what is observed when dipping substrates or when polyelectrolyte solutions flow over a surface. The assembly of films is very fast and leads to films with small surface roughness as estimated by atomic force microscopy and X-ray reflectometry. Spray deposition allows achieving regular multilayer growth even under conditions for which dipping fails to produce homogeneous films (e.g., extremely short contact times). Moreover, because drainage constantly removes a certain quantity of the excess material arriving at the surface, one can even skip the rinsing step and, thus, speed up even further the whole buildup process.  相似文献   

19.
The alternate adsorption of polycation poly(allylamine hydrochloride)(PAH) and the sodium salt of the polymeric dye poly(1-[ p-(3'-carboxy-4'-hydroxyphenylazo)benzenesulfonamido]-1,2-ethandiyl)(PCBS) on quartz crystals coated with silica was studied to understand the structural properties and adsorption kinetics of these films using a combination of quartz crystal microbalance with dissipation monitoring (QCM-D), absorbance, and ellipsometry measurements. In-situ deposition of the polycation PAH on QCM crystals was monitored, followed by rinsing with water and then deposition of the polyanion PCBS. The effects of polymer concentration and pH on film structure, composition and adsorption kinetics were probed. The polymers were adsorbed at neutral pH conditions and at elevated pH conditions where PAH was essentially uncharged to obtain much thicker films. The change in the resonant frequency, Deltaf, of the QCM-D showed a linear decrease with the number of bilayers, a finding consistent with absorbance and ellipsometric thickness measurements which showed linear growth of film thickness. By using the Delta f ratios of PCBS to PAH, the molar ratios of repeat units of PCBS to PAH in the bilayer films as determined by QCM-D were approximately 1:1 at polyelectrolyte concentrations 5-10 mM repeat unit, indicating complete dissociation of the ionic groups. The frequency and dissipation data from the QCM-D experiments were analyzed with the Voigt model to estimate the thickness of the hydrated films which were then compared with thicknesses of dry films measured by ellipsometry. This led to estimates of the water content of the films to be approximately 45 wt %. In addition to the QCM-D, some films were also characterized by a QCM which measures only the first harmonic without dissipation monitoring. For the deposition conditions studied, the deposited mass values measured by the QCM's first harmonic were similar to the results obtained using higher harmonics from QCM-D, indicating that the self-assembled polyelectrolyte films were rigid.  相似文献   

20.
Layer-by-layer (LBL) polyelectrolyte films were constructed from poly(L-glutamic acid) (PGA) and poly(L-aspartic acid) (PAA) as polyanions, and from poly(L-lysine) (PLL) as the polycation. The terminating layer of the films was always PLL. According to attenuated total reflection Fourier transform infrared measurements, the PGA/PLL and PAA/PLL films, despite their chemical similarity, had largely different secondary structures. Extended beta-sheets dominated the PGA/PLL films, while alpha-helices and intramolecular beta-sheets dominated the PAA/PLL films. The secondary structure of the polyelectrolyte film affected the adsorption of human serum albumin (HSA) as well. HSA preserved its native secondary structure on the PGA/PLL film, but it became largely deformed on PAA/PLL films. Both PGA and PAA were able to extrude to a certain extent the other polyanion from the films, but the structural consequences were different. Adding PAA to a (PGA/PLL)5-PGA film resulted in a simple exchange and incorporation: PGA/PLL and PAA/PLL complexes coexisted with their unaltered secondary structures in the mixed film. The incorporation of PGA into a (PAA/PLL)5-PAA film was up to 50% and caused additional beta-structure increase in the secondary structure of the film. The proportions of the two polyanions were roughly the same on the surfaces and in the interiors of the films, indicating practically free diffusion for both polyanions. The abundance of PAA/PLL and PGA/PLL domains on the film surfaces was monitored by the analysis of the amide I region of the infrared spectrum of a reporter molecule, HSA, adsorbed onto the three-component polyelectrolyte films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号