首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peng Q  Cao Z  Lau C  Kai M  Lu J 《The Analyst》2011,136(1):140-147
We report on a highly sensitive aptameric assay system for the determination of IgE, where a special chemiluminescence (CL) reagent, 3,4,5-trimethoxylphenylglyoxal (TMPG), acts as the signaling molecule and polystyrene beads as the amplification platform. Briefly, a "sandwich-type" detection strategy is employed in our design, where magnetic beads functionalized with a capture antibody were reacted with the target protein IgE, and then sandwiched with the aptamer-barcodes which were prepared by assembling polystyrene beads with IgE aptamer. The target immunoreaction event could be sensitively detected via an instantaneous derivatization reaction between TMPG and the guanine (G) nucleotides within the aptamer-barcodes to form an unstable CL intermediate for the generation of light. Further signal amplification is achieved by extending the G nucleotide-rich domain on the aptamer backbone for second amplification. Such simple amplified CL transduction allows the detection of IgE down to the 4.6 pM level, which is better than most previous aptameric methods for IgE detection. This new protocol also provides a good capability in discriminating IgE from nontarget proteins such as IgG, IgA, IgM, interferon and thrombin. The practical application of the proposed aptamer-barcode based immunoassay was successfully carried out for the determination of IgE in 20 human serum samples. It is straightforward to adapt this strategy to detect a spectrum of other proteins by using different aptamers, thus this method may offer a new direction in designing high-performance CL aptasensors for early diagnoses of diseases.  相似文献   

2.
Duan CF  Yu YQ  Cui H 《The Analyst》2008,133(9):1250-1255
A novel microplate-compatible chemiluminescence (CL) immunoassay has been developed for the determination of human immunoglobulin G (IgG) based on the luminol-AgNO(3)-gold nanoparticles CL system. Polystyrene microtiter plates were used for both immunoreactions and CL measurements. The primary antibody, goat-anti-human IgG, was first immobilized on polystyrene microwells. Then the antigen (human IgG) and the gold-labeled second antibody were connected to the microwells successively to form a sandwich-type immunocomplex. The gold label could trigger the reaction between luminol and AgNO(3), accompanied by light emission. Under the optimized conditions, the CL intensity of the system was linear with the logarithm of the concentration of human IgG in the range from 25 to 5000 ng mL(-1), with a detection limit of 12.8 ng mL(-1) ( approximately 80 pM) at a signal to noise ratio of three (S/N = 3). Compared with other reported CL immunoassay method based on gold labels, the proposed CL protocol avoids a strict stripping procedure or difficult to control synthesis processes, making the method more simple, time-saving and easily automated. The present CL method is promising for the determination of clinically important bioactive analytes.  相似文献   

3.
A novel aptamer‐based CE with chemiluminescence (CL) assay was developed for highly sensitive detection of human immunoglobulin E (IgE). The IgE aptamer was conjugated with gold nanoparticles (AuNPs) to form AuNPs‐aptamer that could specifically recognize the IgE to produce an AuNPs‐aptamer‐IgE complex. The mixture of the AuNPs‐aptamer‐IgE complex and the unbounded AuNPs‐aptamer could be effectively separated by CE and sensitively detected with luminol‐H2O2 CL system. By taking the advantage of the excellent catalytic behavior of AuNPs on luminol‐H2O2 CL system, the ultrasensitive detection of IgE was achieved. The detection limit of IgE is 7.6 fM (S/N = 3) with a linear range from 0.025 to 250 pM. Successful detection of IgE in human serum samples was demonstrated and the recoveries of 94.9–103.2% were obtained. The excellent assay features of the developed approach are its specificity, sensitivity, adaptability, and very small sample consumption. Our design provides a methodology model for determination of rare proteins in biological samples.  相似文献   

4.
Fan A  Lau C  Lu J 《The Analyst》2008,133(2):219-225
A sensitive chemiluminescent (CL) detection of sequence-specific DNA has been developed by taking advantage of a magnetic separation/mixing process and the amplification feature of colloidal gold labels. In this protocol, the target oligonucleotides are hybridized with magnetic bead-linked capture probes, followed by the hybridization of the biotin-terminated amplifying DNA probes and the binding of streptavidin-coated gold nanoparticles; the nanometer-sized gold tags are then dissolved and quantified by a simple and sensitive luminol CL reaction. The proposed CL protocol is evaluated for a 30-base model DNA sequence, and the amount as low as 0.01 pmol of DNA is determined, which exhibits a 150 x enhancement in sensitivity over previous gold dissolution-based electrochemical formats and an enhancement of 20 x over the ICPMS detection. Further signal amplification is achieved by the assembly of biotinylated colloidal gold onto the surface of streptavidin-coated polystyrene beads. Such amplified CL transduction allows detection of DNA targets down to the 100 amol level, and offers great promise for ultrasensitive detection of other biorecognition events.  相似文献   

5.
Nam EJ  Kim EJ  Wark AW  Rho S  Kim H  Lee HJ 《The Analyst》2012,137(9):2011-2016
A novel electrochemical detection methodology is described for the femtomolar detection of proteins which utilizes both DNA aptamer-functionalized nanoparticles and a surface enzymatic reaction. Immunoglobulin E (IgE) was used as a model protein biomarker, which possesses two distinct epitopes for antibody (anti-IgE) and DNA aptamer binding. A surface sandwich assay format was utilized involving the specific adsorption of IgE onto a gold electrode surface that was pre-modified with a monolayer of aptamer-nanoparticle conjugates followed by the specific interaction of alkaline phosphatase (ALP) conjugated anti-IgE. To clearly demonstrate the signal enhancement associated with nanoparticle use, anodic current measurements of the ALP catalyzed oxidation of the enzyme substrate 4-aminophenylphosphate (APP) were also compared with electrode surfaces upon which the aptamer was directly attached. The detection of an unlabelled protein at concentrations as low as 5 fM is a significant improvement compared to conventional electrochemical-based immunoassay approaches and provides a foundation for the practical use and incorporation of nanoparticle-enhanced detection into electrochemical biosensing technologies.  相似文献   

6.
Many efforts have been made toward the achievement of high sensitivity in capillary electrophoresis coupled with chemiluminescence detection (CE‐CL). This work describes a novel dual‐signal amplification strategy for highly specific and ultrasensitive CL detection of human platelet‐derived growth factor–BB (PDGF–BB) using both aptamer and horseradish peroxidase (HRP) modified gold nanoparticles (HRP–AuNPs–aptamer) as nanoprobes in CE. Both AuNPs and HRP in the nanoprobes could amplify the CL signals in the luminol–H2O2 CL system, owing to the excellent catalytic behavior of AuNPs and HRP in the CL system. Meanwhile, the high affinity of aptamer modified on the AuNPs allows detection with high specificity. As proof‐of‐concept, the proposed method was employed to quantify the concentration of PDGF–BB from 0.50 to 250 fm with a detection limit of 0.21 fm. The applicability of the assay was further demonstrated in the analysis of PDGF–BB in human serum samples with acceptable accuracy and reliability. The result of this study exhibits distinct advantages, such as high sensitivity, good specificity, simplicity, and very small sample consumption. The good performances of the proposed strategy provide a powerful avenue for ultrasensitive detection of rare proteins in biological sample, showing great promise in biochemical analysis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Due to the ubiquity and essential of the proteins in all living organisms, the identification and quantification of disease-specific proteins are particularly important. Because the conformational change of aptamer upon its target or probe/target/probe sandwich often is the primary prerequisite for the design of an electrochemical aptameric assay system, it is extremely difficult to construct the electrochemical aptasensor for protein assay because the corresponding aptamers cannot often meet the requirement. To circumvent the obstacles mentioned, an electronic channel switching-based (ECS) aptasensor for ultrasensitive protein detection is developed. The essential achievement made is that an innovative sensing concept is proposed: the hairpin structure of aptamer is designed to pull electroactive species toward electrode surface and makes the surface-immobilized IgE serve as a barrier that separates enzyme from its substrate. It seemingly ensures that the ECS aptasensor exhibits most excellent assay features, such as, a detection limit of 4.44 × 10−6 μg mL−1 (22.7 fM, 220 zmol in 10-μL sample) (demonstrating a 5 orders of magnitude improvement in detection sensitivity compared with classical electronic aptasensors) and dynamic response range from 4.44 × 10−6 to 4.44 × 10−1 μg mL−1. We believe that the described sensing concept here might open a new avenue for the detection of proteins and other biomacromolecules.  相似文献   

8.
We report on a highly sensitive chemiluminescent (CL) biosensor for the sequenc-specific detection of DNA using a novel bio barcode DNA probe modified with gold nanoparticles that were covered with a dendrimer. The modified probe is composed of gold nanoparticles, a dendrimer, the CL reagent, and the DNA. The capture probe DNA was immobilized on magnetic beads covered with gold. It first hybridizes with the target DNA and then with one terminal end of the signal DNA on the barcoded DNA probe. CL was generated by adding H2O2 and Co(II) ions as the catalyst. The immobilization of dendrimer onto the gold nanoparticles can significantly enhance sensitivity and gives a detection limit of 6 fmol L-1 of target DNA.
Graphical Abstract
A sensitive chemiluminescent biosensor for the sequenc-specific detection of DNA using a novel bio barcode DNA probe modified with gold nanoparticle that were covered with a dendrimer was reported. The immobilization of dendrimer onto the gold nanoparticles enhances sensitivity and gives a detection limit of 6 fM of target DNA.  相似文献   

9.
Protein kinase plays a vital role in regulating signal‐transduction pathways and its simple and quick detection is highly desirable because traditional kinase assays typically rely on a time‐consuming kinase‐phosphorylation process (ca. 1 h). Herein, we report a new and rapid fluorescence‐based sensing platform for probing the activity of protein kinase that is based on the super‐quenching capacity of graphene oxide (GO) nanosheets and specific recognition of the aptameric peptide (FITC‐IP20). On the GO/peptide platform, the fluorescence quenching of FITC‐IP20 that is adsorbed onto GO can be restored by selective binding of active protein kinase to the aptameric peptide, thereby resulting in the fast switch‐on detection of kinase activity (ca. 15 min). The feasibility of this method has been demonstrated by the sensitive measurement of the activity of cAMP‐dependent protein kinase (PKA), with a detection limit of 0.053 mU μL?1. This assay technique was also successfully applied to the detection of kinase activation in cell lysate.  相似文献   

10.
利用适配体的识别能力和可扩增性, 构建了基于微磁珠分离技术的适配体实时定量聚合酶链式反应(PCR)检测方法. 通过微磁珠偶联的互补链与适配体序列之间的碱基配对结合, 有效除去溶液中未与靶分子结合的适配体序列, 采用实时定量PCR技术测定上清液中结合态的适配体序列浓度, 从而间接实现对靶分子的定量检测. 分别选取代表生物大分子和有机小分子的凝血酶和ATP作为检测对象, 验证了该方法的普适性. 研究结果表明, 在获取特异性适配体序列后, 仅需简单优化其互补链序列, 即可对超低含量的凝血酶和ATP进行准确定量, 检出限分别为50 pmol/L和5 μmol/L. 该方法具有同时适用于高特异性和高灵敏度地检测生物大分子和有机小分子的优势.  相似文献   

11.
Establishing a simple and accurate method for Hg2+ detection is of great importance for the environment and human health. In this work, platinum nanoparticles (Pt NPs) with different capped agents and morphologies were synthesized. It was found that Pt NPs exhibited peroxidase‐like activity that can catalyze the chemiluminescence (CL) of the luminol system without H2O2. The most intensive CL signals were obtained by using PVP‐capped Pt NPs as catalysis. Based on the fact that Hg2+ could further enhance the CL intensity in the Pt NPs‐luminol CL system, a Pt NPs‐catalyzed CL method based on a flow injection system is developed for the sensitive analysis of Hg2+. When the concentration of Hg2+ in the system increases, the CL intensity would together increase, thereby achieving sensitive Hg2+ detection. The limit of detection (LOD) was calculated to be 8.6 nM. This developed method provides a simple and rapid approach for the sensitive detection of Hg2+ and shows great promise for applications in other complex systems.  相似文献   

12.
After showing the failure of conventional gold-enhancement procedures to amplify the gold nanoparticle-based electrochemical transduction of DNA hybridization in polystyrene microwells, a new efficient protocol was developed and evaluated for the sensitive quantification of a 35 base-pair human cytomegalovirus nucleic acid target (tDNA). In this assay, the hybridization of the target adsorbed on the bottom of microwells with an oligonucleotide-modified Au nanoparticle detection probe (pDNA-Au) was monitored by the anodic stripping detection of the chemically oxidized gold label at a screen-printed microband electrode (SPMBE). Thanks to the combination of the sensitive Au(III) determination at a SPMBE with the large amount of Au(III) released from each pDNA-Au, picomolar detection limits of tDNA can be achieved. Further enhancement of the hybridization signal based on the autocatalytic reductive deposition of ionic gold (Au(III)) on the surface of the gold nanoparticle labels anchored on the hybrids was first envisaged by incubating the commonly used mixture of Au(III) and hydroxylamine (NH(2)OH). However, due to a considerable nonspecific current response of poor reproducibility it was not possible to significantly improve the analytical performances of the method under these conditions. Complementary transmission electronic microscopy experiments indicated the loss of most of the grown gold labels during the post-enlargement rinsing step. To circumvent this drawback, a polymeric solute containing polyethyleneglycol and sodium chloride was introduced in the growth media to act as an aggregating agent during the catalytic process and thus retain the enlarged labels on the bottom of the microwell. This strategy, which led to an efficient increase of the hybridization response, allowed detection of tDNA concentrations as low as 600 aM (i.e., 10(4) lower than without amplification), and thus offers great promise for ultrasensitive detection of other hybridization events.  相似文献   

13.
A novel dendritic CdS‐ZnS‐Quantum Dots (QDs) nanocomposite with intense electrochemiluminescence (ECL) and excellent magnetism was prepared, which was applied to the cancer cells assay based on ECL quenching of QDs by gold nanoparticles (NPs). DNA conjugation, gold NPs linking and sensing target cells can be directly performed on the magnetic nanocomposites, which is more rapid, convenient, and has better reproducibility than the conventional methods. So far, this is the first report on magnetic electrochemiluminescent QDs nanocomposites for cell detection based on ECL quenching, which opens a new approach for developing multifunctional QDs nanocomposite for ECL assays of cancer cells.  相似文献   

14.
A simple biosensing strategy for the diagnosis of patients with hepatitis B virus (HBV) was developed. This study can be divided into two themes, both of which utilized gold-binding polypeptide (GBP) fusion proteins: HBV surface antigen PreS2 (HBsAg) detection with GBP-fused single chain antibody (GBP-ScFv) and anti-HBsAg detection with GBP-HBsAg. These GBP-fusion proteins can directly bind onto the gold surface via the high binding affinity between the GBP and the gold surface, while at the same time, orient the recognition sites toward the sample for target binding. This one-step immobilization strategy, which greatly simplifies a fabrication process as well as maintaining biological activity of the recognition elements, can be applied to optical analytical methods, such as surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR).  相似文献   

15.
A surface plasmon resonance (SPR)-based biosensor was developed for simple diagnosis of severe acute respiratory syndrome (SARS) using a protein created by genetically fusing gold binding polypeptides (GBPs) to a SARS coronaviral surface antigen (SCVme). The GBP domain of the fusion protein serves as an anchoring component onto the gold surface, exploiting the gold binding affinity of the domain, whereas the SCVme domain is a recognition element for anti-SCVme antibody, the target analyte in this study. SPR analysis indicated the fusion protein simply and strongly self-immobilized onto the gold surface, through GBP, without surface chemical modification, offering a stable and specific sensing platform for anti-SCVme detection. AFM and SPR imaging analyses demonstrated that anti-SCVme specifically bound to the fusion protein immobilized onto the gold-micropatterned chip, implying that appropriate orientation of bound fusion protein by GBP resulted in optimal exposure of the SCVme domain to the assay solution, resulting in efficient capture of anti-SCVme antibody. The best packing density of the fusion protein onto the SPR chip was achieved at the concentration of 10 μg mL−1; this density showed the highest detection response (906 RU) for anti-SCVme. The fusion protein-coated SPR chip at the best packing density had a lower limit of detection of 200 ng mL−1 anti-SCVme within 10 min and also allowed selective detection of anti-SCVme with significantly low responses for non-specific mouse IgG at all tested concentrations. The fusion protein provides a simple and effective method for construction of SPR sensing platforms permitting sensitive and selective detection of anti-SCVme antibody.  相似文献   

16.
We report herein an exonuclease-assisted aptamer-based target recycling amplification strategy for sensitive and selective chemiluminescence (CL) determination of adenosine. This aptasensor is based on target-induced release of aptamers from capture probes immobilized on the 96-well plate surface, and thus leading to a decreased hybridization with gold nanoparticle-functionalized reporter sequences followed by a CL signal. The introduction of exonuclease III catalyzes the stepwise removal of mononucleotides from 3′-hydroxyl termini of duplex DNAs of aptamers, liberating the adenosine. Therefore, a single copy of target adenosine can lead to the release and digestion of numerous aptamer strands from the 96-well plates and ultimately an enhanced sensitivity is achieved. Experimental results revealed that the exonuclease-assisted recycling strategy enabled the monitoring of adenosine with wide working ranges and low detection limits (LOD: 0.5 nM). This new CL strategy might create a novel technology for the detection of various targets and could find wide applications in the environmental and biomedical fields.  相似文献   

17.
Tang CK  Vaze A  Rusling JF 《Lab on a chip》2012,12(2):281-286
A simple method is reported to fabricate gold arrays featuring microwells surrounding 8-electrodes from gold compact discs (CDs) for less than $0.2 per chip. Integration of these disposable gold CD array chips with microfluidics provided inexpensive immunoarrays that were used to measure a cancer biomarker protein quickly at high sensitivity. The gold CD sensor arrays were fabricated using thermal transfer of laserjet toner from a computer-printed pattern followed by selective chemical etching. Sensor elements had an electrochemically addressable surface area of 0.42 mm(2) with RSD <2%. For a proof-of-concept application, the arrays were integrated into a simple microfluidic device for electrochemical detection of cancer biomarker interleukin-6 (IL-6) in diluted serum. Capture antibodies of IL-6 were chemically linked onto the electrode arrays and a sandwich immunoassay protocol was developed. A biotinylated detection antibody with polymerized horseradish peroxidase labels was used for signal amplification. The detection limit of IL-6 in diluted serum was remarkably low at 10 fg mL(-1) (385 aM) with a linear response with log of IL-6 concentration from 10 to 1300 fg mL(-1). These easily fabricated, ultrasensitive, microfluidic immunosensors should be readily adapted for sensitive detection of multiple biomarkers for cancer diagnostics.  相似文献   

18.
本文以羧基96孔板为分离载体,核酸适配体作为分子特异性识别元件,聚苯乙烯微球作为放大载体,辣根过氧化物酶为标记物,构建了化学发光(CL)高灵敏度凝血酶检测新技术.实验结果表明:该放大技术不但灵敏度高,且抗干扰能力强,其他蛋白质如IgG、IgM、IgA、IgE、IFN均无明显干扰.聚苯乙烯微球放大体系中凝血酶的线性范围为7.8~250pmol/L,最低检测浓度可达3.9pmol/L;而不放大检测技术的线性范围为0.94~30nmol/L,最低检测浓度为0.46nmol/L,放大体系将检测灵敏度提高100多倍.综合而言,基于适配体识别和聚苯乙烯微球放大的凝血酶CL检测新技术具有通量大、简单快速和灵敏度高的特点,有望在凝血酶高通量检测领域获得应用.  相似文献   

19.
A selective aptameric sequence is adsorbed on a two-dimensional nanostructured metallic platform optimized for surface-enhanced Raman spectroscopy (SERS) measurements. Using nanofabrication methods, a metallic nanostructure was prepared by electron-beam lithography onto a glass coverslip surface and embedded within a microfluidic channel made of polydimethylsiloxane, allowing one to monitor in situ SERS fingerprint spectra from the adsorbed molecules on the metallic nanostructures. The gold structure was designed so that its localized surface plasmon resonance matches the excitation wavelength used for the Raman measurement. This optofluidic device is then used to detect the presence of a toxin, namely ochratoxin-A (OTA), in a confined environment, using very small amounts of chemicals, and short data acquisition times, by taking advantage of the optical properties of a SERS platform to magnify the Raman signals of the aptameric monolayer system and avoiding chemical labeling of the aptamer or the OTA target.
Fig
Aptamer detection of OTA within a SERS/microfluidic channel  相似文献   

20.
本文建立了一种基于辣根过氧化物酶(HRP)和碱性磷酸酯酶(ALP)化学发光底物分辨的双组分免疫分析新技术,用以检测人胶质瘤血清标志物神经元特异性烯醇化酶(NSE)和糖链抗原15-3(CA15-3).实验详细考察了捕获抗体、检测抗体、HRP和ALP酶标记物的用量,结果发现NSE和CA15-3的线性范围分别为0.5~20ng/mL(R20.99)和0.5~20U/mL(R20.99),最低检出限分别为0.2ng/mL和0.2U/mL;高、中和低三个浓度的血清加样回收率良好;天内和天间相对标准偏差均小于10%;且一份血清,两组分同时检测无交叉干扰.综合而言:本法能够一次实验,高灵敏、高特异地同时检测两种疾病标志物,具有血清用量少、检测时间短、操作简单、结果可靠的优点,有望为胶质瘤的临床早期诊断提供坚实的支持.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号