首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Motivated by problems occurring in the empirical identification and modelling of a n-dimensional ARMA time series X(t) we study the possibility of obtaining a factorization (I + a1B + … + apBp) X(t) = [Πi=1p (I ? αiB)] X(t), where B is the backward shift operator. Using a result in [3] we conclude that as in the univariate case such a factorization always exists, but unlike the univariate case in general the factorization is not unique for given a1, a2,…, ap. In fact the number of possibilities is limited upwards by (np)!(n!)p, there being cases, however, where this maximum is not reached. Implications for the existence and possible use of transformations which removes nonstationarity (or almost nonstationarity) of X(t) are mentioned.  相似文献   

2.
Let Xj = (X1j ,…, Xpj), j = 1,…, n be n independent random vectors. For x = (x1 ,…, xp) in Rp and for α in [0, 1], let Fj1(x) = αI(X1j < x1 ,…, Xpj < xp) + (1 ? α) I(X1jx1 ,…, Xpjxp), where I(A) is the indicator random variable of the event A. Let Fj(x) = E(Fj1(x)) and Dn = supx, α max1 ≤ Nn0n(Fj1(x) ? Fj(x))|. It is shown that P[DnL] < 4pL exp{?2(L2n?1 ? 1)} for each positive integer n and for all L2n; and, as n → ∞, Dn = 0((nlogn)12) with probability one.  相似文献   

3.
Let Ω be a finite set with k elements and for each integer n ≧ 1 let Ωn = Ω × Ω × … × Ω (n-tuple) and Ωn = {(a1, a2,…, an) | (a1, a2,…, an) ∈ Ωn and ajaj+1 for some 1 ≦ jn ? 1}. Let {Ym} be a sequence of independent and identically distributed random variables such that P(Y1 = a) = k?1 for all a in Ω. In this paper, we obtain some very surprising and interesting results about the first occurrence of elements in Ωn and in Ω?n with respect to the stochastic process {Ym}. The results here provide us with a better and deeper understanding of the fair coin-tossing (k-sided) process.  相似文献   

4.
Let kn ? kn?1 ? … ? k1 be positive integers and let (ij) denote the coefficient of xi in Πr=1j (1 + x + x2 + … + xkr). For given integers l, m, where 1 ? l ? kn + kn?1 + … + k1 and 1 ? m ? (nn), it is shown that there exist unique integers m(l), m(l ? 1),…, m(t), satisfying certain conditions, for which m = (m(l)l + (m(l?1)l?1) + … + (m(t)t). Moreover, any m l-subsets of a multiset with ki elements of type i, i = 1, 2,…, n, will contain at least (m(l)l?1) + (m(l?1)l?2) + … + (m(t)t?1 different (l ? 1)-subsets. This result has been anticipated by Greene and Kleitman, but the formulation there is not completely correct. If k1 = 1, the numbers (ji) are binomial coefficients and the result is the Kruskal-Katona theorem.  相似文献   

5.
In this paper, we are studying Dirichlet series Z(P,ξ,s) = Σn?N1rP(n)?s ξn, where PR+ [X1,…,Xr] and ξn = ξ1n1ξrnr, with ξiC, such that |ξi| = 1 and ξi ≠ 1, 1 ≦ ir. We show that Z(P, ξ,·) can be continued holomorphically to the whole complex plane, and that the values Z(P, ξ, ?k) for all non negative integers, belong to the field generated over Q by the ξi and the coefficients of P. If, there exists a number field K, containing the ξi, 1 ≦ ir, and the coefficients of P, then we study the denominators of Z(P, ξ, ?k) and we define a B-adic function ZB(P, ξ,·) which is equal, on class of negative integers, to Z(P, ξ, ?k).  相似文献   

6.
A lower (upper) bound is given for the distribution of each dj, j = k + 1, …, p (j = 1, …, s), the jth latent root of AB?1, where A and B are independent noncentral and central Wishart matrices having Wp(q, Σ; Ω) with rank (Ω) ≤ k = p ? s and Wp(n, Σ), respectively. Similar bound are also given for the distributions of noncentral means and canonical correlations. The results are applied to obtain lower bounds for the null distributions of some multivariate test statistics in Tintner's model, MANOVA and canonical analysis.  相似文献   

7.
For a sequence A = {Ak} of finite subsets of N we introduce: δ(A) = infm?nA(m)2n, d(A) = lim infn→∞ A(n)2n, where A(m) is the number of subsets Ak ? {1, 2, …, m}.The collection of all subsets of {1, …, n} together with the operation a ∪ b, (a ∩ b), (a 1 b = a ∪ b ? a ∩ b) constitutes a finite semi-group N (semi-group N) (group N1). For N, N we prove analogues of the Erdös-Landau theorem: δ(A+B) ? δ(A)(1+(2λ)?1(1?δ(A>))), where B is a base of N of the average order λ. We prove for N, N, N1 analogues of Schnirelmann's theorem (that δ(A) + δ(B) > 1 implies δ(A + B) = 1) and the inequalities λ ? 2h, where h is the order of the base.We introduce the concept of divisibility of subsets: a|b if b is a continuation of a. We prove an analog of the Davenport-Erdös theorem: if d(A) > 0, then there exists an infinite sequence {Akr}, where Akr | Akr+1 for r = 1, 2, …. In Section 6 we consider for N∪, N∩, N1 analogues of Rohrbach inequality: 2n ? g(n) ? 2n, where g(n) = min k over the subsets {a1 < … < ak} ? {0, 1, 2, …, n}, such that every m? {0, 1, 2, …, n} can be expressed as m = ai + aj.Pour une série A = {Ak} de sous-ensembles finis de N on introduit les densités: δ(A) = infm?nA(m)2m, d(A) = lim infn→∞ A(n)2nA(m) est le nombre d'ensembles Ak ? {1, 2, …, m}. L'ensemble de toutes les parties de {1, 2, …, n} devient, pour les opérations a ∪ b, a ∩ b, a 1 b = a ∪ b ? a ∩ b, un semi-groupe fini N, N ou un groupe N1 respectivement. Pour N, N on démontre l'analogue du théorème de Erdös-Landau: δ(A + B) ? δ(A)(1 + (2λ)?1(1?δ(A))), où B est une base de N d'ordre moyen λ. On démontre pour N, N, N1 l'analogue du théorème de Schnirelmann (si δ(A) + δ(B) > 1, alors δ(A + B) = 1) et les inégalités λ ? 2h, où h est l'ordre de base. On introduit le rapport de divisibilité des enembles: a|b, si b est une continuation de a. On démontre l'analogue du théorème de Davenport-Erdös: si d(A) > 0, alors il existe une sous-série infinie {Akr}, où Akr|Akr+1, pour r = 1, 2, … . Dans le Paragraphe 6 on envisage pour N, N, N1 les analogues de l'inégalité de Rohrbach: 2n ? g(n) ? 2n, où g(n) = min k pour les ensembles {a1 < … < ak} ? {0, 1, 2, …, n} tels que pour tout m? {0, 1, 2, …, n} on a m = ai + aj.  相似文献   

8.
If k is a perfect field of characteristic p ≠ 0 and k(x) is the rational function field over k, it is possible to construct cyclic extensions Kn over k(x) such that [K : k(x)] = pn using the concept of Witt vectors. This is accomplished in the following way; if [β1, β2,…, βn] is a Witt vector over k(x) = K0, then the Witt equation yp ? y = β generates a tower of extensions through Ki = Ki?1(yi) where y = [y1, y2,…, yn]. In this paper, it is shown that there exists an alternate method of generating this tower which lends itself better for further constructions in Kn. This alternate generation has the form Ki = Ki?1(yi); yip ? yi = Bi, where, as a divisor in Ki?1, Bi has the form (Bi) = qΠpjλj. In this form q is prime to Πpjλj and each λj is positive and prime to p. As an application of this, the alternate generation is used to construct a lower-triangular form of the Hasse-Witt matrix of such a field Kn over an algebraically closed field of constants.  相似文献   

9.
Let R = (r1,…, rm) and S = (s1,…, sn) be nonnegative integral vectors, and let U(R, S) denote the class of all m × n matrices of 0's and 1's having row sum vector R and column sum vector S. An invariant position of U(R, S) is a position whose entry is the same for all matrices in U(R, S). The interchange graph G(R, S) is the graph where the vertices are the matrices in U(R, S) and where two matrices are joined by an edge provided they differ by an interchange. We prove that when 1 ≤ rin ? 1 (i = 1,…, m) and 1 ≤ sjm ? 1 (j = 1,…, n), G(R, S) is prime if and only if U(R, S) has no invariant positions.  相似文献   

10.
Let H be a subset of the set Sn of all permutations
12???ns(1)s(2)???s(n)
C=6cij6 a real n?n matrix Lc(s)=c1s(1)+c2s(2)+???+cns(n) for s ? H. A pair (H, C) is the existencee of reals a1,b1,a2,b2,…an,bn, for which cij=a1+bj if (i,j)?D(H), where D(H)={(i,j):(?h?H)(j=h(i))}.For a pair (H,C) the specifity of it is proved in the case, when H is either a special cyclic class of permutations or a special union of cyclic classes. Specific pairs with minimal sets H are in some sense described.  相似文献   

11.
For each natural number n, let a0(n) = n, and if a0(n),…,ai(n) have already been defined, let ai+1(n) > ai(n) be minimal with (ai+1(n), a0(n) … ai(n)) = 1. Let g(n) be the largest ai(n) not a prime or the square of a prime. We show that g(n) ~ n and that g(n) > n + cn12log(n) for some c > 0. The true order of magnitude of g(n) ? n seems to be connected with the fine distribution of prime numbers. We also show that “most” ai(n) that are not primes or squares of primes are products of two distinct primes. A result of independent interest comes of one of our proofs: For every sufficiently large n there is a prime p < n12 with [np] composite.  相似文献   

12.
We regard a graph G as a set {1,…, v} together with a nonempty set E of two-element subsets of {1,…, v}. Let p = (p1,…, pv) be an element of Rnv representing v points in Rn and consider the realization G(p) of G in Rn consisting of the line segments [pi, pj] in Rn for {i, j} ?E. The figure G(p) is said to be rigid in Rn if every continuous path in Rnv, beginning at p and preserving the edge lengths of G(p), terminates at a point q ? Rnv which is the image (Tp1,…, Tpv) of p under an isometry T of Rn. We here study the rigidity and infinitesimal rigidity of graphs, surfaces, and more general structures. A graph theoretic method for determining the rigidity of graphs in R2 is discussed, followed by an examination of the rigidity of convex polyhedral surfaces in R3.  相似文献   

13.
Let xi ≥ 0, yi ≥ 0 for i = 1,…, n; and let aj(x) be the elementary symmetric function of n variables given by aj(x) = ∑1 ≤ ii < … <ijnxiixij. Define the partical ordering x <y if aj(x) ≤ aj(y), j = 1,… n. We show that x $?y ? xα$?yα, 0 $?α ≤ 1, where {xα}i = xαi. We also give a necessary and sufficient condition on a function f(t) such that x <y ? f(x) <f(y). Both results depend crucially on the following: If x <y there exists a piecewise differentiable path z(t), with zi(t) ≥ 0, such that z(0) = x, z(1) = y, and z(s) <z(t) if 0 ≤ st ≤ 1.  相似文献   

14.
If X1,…,Xn are independent identically distributed Rd-valued random vectors with probability measure μ and empirical probability measure μn, and if a is a subset of the Borel sets on Rd, then we show that P{supAan(A)?μ(A)|≥ε} ≤ cs(a, n2)e?2n2, where c is an explicitly given constant, and s(a, n) is the maximum over all (x1,…,xn) ∈ Rdn of the number of different sets in {{x1…,xn}∩A|Aa}. The bound strengthens a result due to Vapnik and Chervonenkis.  相似文献   

15.
The least absolute deviation estimates L(N), from N data points, of the autoregressive constants a = (a1, …, aq)′ for a stationary autoregressive model, are shown to have the property that Nσ(L(N) ? a) converge to zero in probability, for σ < 1α, where the disturbances are i.i.d., attracted to a stable law of index α, 1 ≤ α < 2, and satisfy some other conditions.  相似文献   

16.
Let T be a rooted tree structure with n nodes a1,…,an. A function f: {a1,…,an} into {1 < ? < k} is called monotone if whenever ai is a son of aj, then f(ai) ≥ f(aj). The average number of monotone bijections is determined for several classes of tree structures. If k is fixed, for the average number of monotone functions asymptotic equivalents of the form c · ??nn?32 (n → ∞) are obtained for several classes of tree structures.  相似文献   

17.
In Rn let Ω denote a Nikodym region (= a connected open set on which every distribution of finite Dirichlet integral is itself in L2(Ω)). The existence of n commuting self-adjoint operators H1,…, Hnin L2(Ω) such that each Hj is a restriction of ?i ββxj (acting in the distribution sense) is shown to be equivalent to the existence of a set Λ ?Rn such that the restrictions to Ω of the functions exp iλjxj form a total orthogonal family in L2(Ω). If it is required, in addition, that the unitary groups generated by H1,…, Hn act multiplicatively on L2(Ω), then this is shown to correspond to the requirement that Λ can be chosen as a subgroup of the additive group Rn. The measurable sets Ω ?Rn (of finite Lebesgue measure) for which there exists a subgroup Λ ?Rn as stated are precisely those measurable sets which (after a correction by a null set) form a system of representatives for the quotient of Rn by some subgroup Γ (essentially the dual of Λ).  相似文献   

18.
A function f(x) defined on X = X1 × X2 × … × Xn where each Xi is totally ordered satisfying f(xy) f(xy) ≥ f(x) f(y), where the lattice operations ∨ and ∧ refer to the usual ordering on X, is said to be multivariate totally positive of order 2 (MTP2). A random vector Z = (Z1, Z2,…, Zn) of n-real components is MTP2 if its density is MTP2. Classes of examples include independent random variables, absolute value multinormal whose covariance matrix Σ satisfies ??1D with nonnegative off-diagonal elements for some diagonal matrix D, characteristic roots of random Wishart matrices, multivariate logistic, gamma and F distributions, and others. Composition and marginal operations preserve the MTP2 properties. The MTP2 property facilitate the characterization of bounds for confidence sets, the calculation of coverage probabilities, securing estimates of multivariate ranking, in establishing a hierarchy of correlation inequalities, and in studying monotone Markov processes. Extensions on the theory of MTP2 kernels are presented and amplified by a wide variety of applications.  相似文献   

19.
Let?(x1,…,xp) be a polynomial in the variables x1,…,xp with nonnegative real coefficients which sum to one, let A1,…,Ap be stochastic matrices, and let ??(A1,…,Ap) be the stochastic matrix which is obtained from ? by substituting the Kronecker product of An11,…,Anppfor each term Xn11·?·Xnpp. In this paper, we present necessary and sufficient conditions for the Cesàro limit of the sequence of the powers of ??(A1,…,Ap) to be equal to the Kronecker product of the Cesàro limits associated with each of A1,…,Ap. These conditions show that the equality of these two matrices depends only on the number of ergodic sets under??(A1,…,Ap) and?or the cyclic structure of the ergodic sets under A1,…,Ap, respectively. As a special case of these results, we obtain necessary and sufficient conditions for the interchangeability of the Kronecker product and the Cesàro limit operator.  相似文献   

20.
Put Zn = {1, 2,…, n} and let π denote an arbitrary permutation of Zn. Problem I. Let π = (π(1), π(2), …, π(n)). π has an up, down, or fixed point at a according as a < π(a), a > π(a), or a = π(a). Let A(r, s, t) be the number of πZn with r ups, s downs, and t fixed points. Problem II. Consider the triple π?1(a), a, π(a). Let R denote an up and F a down of π and let B(n, r, s) denote the number of πZn with r occurrences of π?1(a)RaRπ(a) and s occurrences of π?1(a)FaFπ(a). Generating functions are obtained for each enumerant as well as for a refinement of the second. In each case use is made of the cycle structure of permutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号