首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王振彦  沈瑞 《中国物理 B》2010,19(8):87401-087401
<正>The anisotropy of the dc Josephson current in the superconducting junctions of the p-wave equal spin pairing symmetry is theoretically investigated by the Furusaki-Tsukada-like formula.The current phase relations exhibit different oscillation periods and different phase shifts for the current along different directions,respectively.  相似文献   

2.
Electron fractionalization is intimately related to topology. In one-dimensional systems, fractionally charged states exist at domain walls between degenerate vacua. In two-dimensional systems, fractionalization exists in quantum Hall fluids, where time-reversal symmetry is broken by a large external magnetic field. Recently, there has been a tremendous effort in the search for examples of fractionalization in two-dimensional systems with time-reversal symmetry. In this Letter, we show that fractionally charged topological excitations exist on graphenelike structures, where quasiparticles are described by two flavors of Dirac fermions and time-reversal symmetry is respected. The topological zero modes are mathematically similar to fractional vortices in p-wave superconductors. They correspond to a twist in the phase in the mass of the Dirac fermions, akin to cosmic strings in particle physics.  相似文献   

3.
杨圆  陈帅  李小兵 《物理学报》2018,67(23):237101-237101
本文研究了各向同性square-octagon晶格在内禀自旋轨道耦合、Rashba自旋轨道耦合和交换场作用下的拓扑相变,同时引入陈数和自旋陈数对系统进行拓扑分类.系统在自旋轨道耦合和交换场的影响下会出现许多拓扑非平庸态,包括时间反演对称破缺的量子自旋霍尔态和量子反常霍尔态.特别的是,在时间反演对称破缺的量子自旋霍尔效应中,无能隙螺旋边缘态依然能够完好存在.调节交换场或者填充因子的大小会导致系统发生从时间反演对称破缺的量子自旋霍尔态到自旋过滤的量子反常霍尔态的拓扑相变.边缘态能谱和自旋谱的性质与陈数和自旋陈数的拓扑刻画完全一致.这些研究成果为自旋量子操控提供了一个有趣的途径.  相似文献   

4.
The layered perovskite Sr2RuO4 exhibits unconventional superconductivity below 1.5 K. There are now several key experimental facts which indicate that its superconducting symmetry is spin-triplet, p-wave, but some important features of its gap structure still need to be determined. In order to address some of the outstanding issues, we have performed a study of its thermodynamic behavior in the field-temperature phase diagram. Specific heat measurements give evidence for multiple superconducting gaps. We will discuss implications of this in relation to the idea of “orbital-dependent superconductivity”. We will also present the results of a search for a second superconducting transition under the magnetic field applied precisely parallel to the quasi-two-dimensional plane.  相似文献   

5.
A crucial step in revealing the nature of unconventional superconductivity is to investigate the symmetry of the superconducting order parameter. Scanning tunneling spectroscopy has proven a powerful technique to probe this symmetry by measuring the quasiparticle interference (QPI) which sensitively depends on the superconducting pairing mechanism. A particularly well-suited material to apply this technique is the stoichiometric superconductor LiFeAs as it features clean, charge neutral cleaved surfaces without surface states and a relatively high T(c)~18 K. Our data reveal that in LiFeAs the quasiparticle scattering is governed by a van Hove singularity at the center of the Brillouin zone which is in stark contrast to other pnictide superconductors where nesting is crucial for both scattering and s(±) superconductivity. Indeed, within a minimal model and using the most elementary order parameters, calculations of the QPI suggest a dominating role of the holelike bands for the quasiparticle scattering. Our theoretical findings do not support the elementary singlet pairing symmetries s(++), s(±), and d wave. This brings to mind that the superconducting pairing mechanism in LiFeAs is based on an unusual pairing symmetry such as an elementary p wave (which provides optimal agreement between the experimental data and QPI simulations) or a more complex order parameter (e.g., s+id wave symmetry).  相似文献   

6.
This presentation gives an overview over phenomena occurring in unconventional superconductors with broken time-reversal symmetry. The best-known effect related with broken time-reversal symmetry is intrinsic magnetism observable by μSR. In many cases this magnetism is connected to the appearance of chiral quasiparticle edge states which originate from topological properties of the superconducting order parameter. Time-reversal symmetry can also be broken only locally and has then strong influence of the local quasiparticle spectrum. The existence of vortices with fractional flux pinned strongly on domain walls in time-reversal symmetry breaking superconductors leads to unusual flux flow behavior.  相似文献   

7.
Nontrivial symmetry of order parameters is crucial in some of the most interesting quantum many-body states of ultracold atoms as well as condensed matter systems. Examples in cold atoms include p-wave Feshbach molecules and d-wave paired states of fermions that could be realized in optical lattices in the Hubbard regime. Identifying these states in experiments requires measurements of the relative phase of different components of the entangled pair wave function. We propose and discuss two schemes for such phase-sensitive measurements, based on two-particle interference revealed in atom-atom or atomic density correlations. Our schemes can also be used for relative phase measurements for nontrivial particle-hole order parameters, such as d-density wave order.  相似文献   

8.
Xian-Dong Li 《中国物理 B》2022,31(11):110304-110304
The Janus monolayer transition metal dichalcogenides (TMDs) $MXY$ ($M={\rm Mo}$, W, $etc$. and $X, Y={\rm S}$, Se, $etc$.) have been successfully synthesized in recent years. The Rashba spin splitting in these compounds arises due to the breaking of out-of-plane mirror symmetry. Here we study the pairing symmetry of superconducting Janus monolayer TMDs within the weak-coupling framework near critical temperature $T_{\rm c}$, of which the Fermi surface (FS) sheets centered around both $ărGamma$ and $K (K')$ points. We find that the strong Rashba splitting produces two kinds of topological superconducting states which differ from that in its parent compounds. More specifically, at relatively high chemical potentials, we obtain a time-reversal invariant $s + f + p$-wave mixed superconducting state, which is fully gapped and topologically nontrivial, $i.e.$, a $\mathbb{Z}_2$ topological state. On the other hand, a time-reversal symmetry breaking $d + p + f$-wave superconducting state appears at lower chemical potentials. This state possess a large Chern number $|C|=6$ at appropriate pairing strength, demonstrating its nontrivial band topology. Our results suggest the Janus monolayer TMDs to be a promising candidate for the intrinsic helical and chiral topological superconductors.  相似文献   

9.
Using the diagram technique for Hubbard operators, the effect of quasi-two-dimensionality and hybridization of the 4f electrons of cerium ions and p electrons of indium ions on the properties of the antiferromagnetic, superconducting, and mixed phases in heavy-fermion intermetallic compounds of cerium is studied. It is shown that taking into account quasi-two-dimensionality, low-energy hybridization processes renormalize the antiferromagnetic and superconducting order parameters in the broken time-reversal symmetry phase. Estimates of the critical temperatures of antiferromagnetic ordering and Cooper instability, obtained by the developed approach, are in good agreement with experimental data for cerium-based intermetallic compounds.  相似文献   

10.
We study a single-species polarized Fermi gas tuned across a narrow p-wave Feshbach resonance. We show that in the course of a Bose-Einstein condensation (BEC)-BCS crossover, the system can undergo a magnetic-field-tuned quantum phase transition from a px-wave to a px+ipy-wave superfluid. The latter state, that spontaneously breaks time-reversal symmetry, furthermore undergoes a topological px+ipy to px+ipy transition at zero chemical potential mu. In two dimensions, for mu > 0 it is characterized by a Pfaffian ground state exhibiting topological order and non-Abelian excitations familiar from fractional quantum Hall systems.  相似文献   

11.
The quantum spin Hall (QSH) state of matter is usually considered to be protected by time-reversal (TR) symmetry. We investigate the fate of the QSH effect in the presence of the Rashba spin-orbit coupling and an exchange field, which break both inversion and TR symmetries. It is found that the QSH state characterized by nonzero spin Chern numbers C(±) = ±1 persists when the TR symmetry is broken. A topological phase transition from the TR-symmetry-broken QSH phase to a quantum anomalous Hall phase occurs at a critical exchange field, where the bulk band gap just closes. It is also shown that the transition from the TR-symmetry-broken QSH phase to an ordinary insulator state cannot happen without closing the band gap.  相似文献   

12.
Rotation of the plane of polarization of reflected light (Kerr effect) is a direct manifestation of broken time-reversal symmetry and is generally associated with the appearance of a ferromagnetic moment. Here I identify magnetic structures that may arise within the unit cell of cuprate superconductors that generate polarization rotation despite the absence of a net moment. For these magnetic symmetries the Kerr effect is mediated by magnetoelectric coupling, which can arise when antiferromagnetic order breaks inversion symmetry. The structures identified are candidates for a time-reversal breaking phase in the pseudogap regime of the cuprates.  相似文献   

13.
Symmetry plays fundamental role in physics and the nature of symmetry changes in non-Hermitian physics.Here the symmetry-protected scattering in non-Hermitian linear systems is investigated by employing the discrete symmetries that classify the random matrices.The even-parity symmetries impose strict constraints on the scattering coefficients:the time-reversal(C and K) symmetries protect the symmetric transmission or reflection;the pseudo-Hermiticity(Q symmetry) or the inversion(P) symmetry protects the symmetric transmission and reflection.For the inversion-combined time-reversal symmetries,the symmetric features on the transmission and reflection interchange.The odd-parity symmetries including the particle-hole symmetry,chiral symmetry,and sublattice symmetry cannot ensure the scattering to be symmetric.These guiding principles are valid for both Hermitian and non-Hermitian linear systems.Our findings provide fundamental insights into symmetry and scattering ranging from condensed matter physics to quantum physics and optics.  相似文献   

14.
We identify an intrinsic Hall effect in multiband chiral superconductors in the absence of a magnetic field (i.e., an anomalous Hall effect). This effect arises from interband transitions involving time-reversal symmetry-breaking chiral Cooper pairs. We discuss the implications of this effect for the putative chiral p-wave superconductor, Sr2RuO4, and show that it can contribute significantly to Kerr rotation experiments. Since the magnitude of the effect depends on the structure of the order parameter across the bands, this result may be used to distinguish between different models proposed for the superconducting state of Sr2RuO4.  相似文献   

15.
刘丹  胡森 《物理学报》2019,68(2):24206-024206
基于光子晶体来构筑偏振无关光二极管在光电集成领域具有重大的应用价值.首先提出了一种环形孔光子晶体,能带结构显示其对横电及横磁模式同时展现出显著的方向带隙.以此构建了三角形状的环形孔光子晶体,利用时域有限差分法计算其透过谱及场分布图,发现该结构能实现偏振无关单向传输特性,然而正向透过率太低(约20%).进一步引入尺寸较小的三角形状的环形孔光子晶体构成光子晶体异质结结构,有效地提高了偏振无关单向传输性能,正向透过率增大了一倍.通过界面结构的调整,正向透过率进一步增大,优化后的环形孔光子晶体异质结结构能同时对类横电及类横磁模式入射光实现单向传输,且正向透过率达到了44%.  相似文献   

16.
17.
We report on muon-spin relaxation measurements of the 4f(2)-based heavy-fermion superconductor filled-skutterudite Pr(Os4Sb12. The results reveal the spontaneous appearance of static internal magnetic fields below the superconducting transition temperature, providing unambiguous evidence for the breaking of time-reversal symmetry in the superconducting state. A discussion is made on which of the spin or orbital component of Cooper pairs carries a nonzero momentum.  相似文献   

18.
Quasiparticle (QP) planar tunneling spectroscopy is used to investigate the density of states (DoS) of YBa2Cu3O7 (YBCO). Temperature, crystallographic orientation, doping, damage and magnetic field dependencies confirm that the observed zero-bias conductance peak (ZBCP) is an Andreev bound state (ABS), an intrinsic property of a d-wave superconducting order parameter (OP) at an interface. In zero applied field, the splitting of the ZBCP below 8 K confirms a near-surface phase transition into a superconducting state with spontaneously broken time-reversal symmetry (BTRS). Tunneling into the ABS provides a phase-sensitive spectroscopy that can be used to measure a variety of DoS properties in an unconventional superconductor.  相似文献   

19.
The statistical mechanics of the time-reversal and inversion symmetry breaking order parameter, possibly observed in the pseudogap region of the phase diagram of the cuprates, can be represented by the Ashkin-Teller model. We add kinetic energy and dissipation to the model for a quantum generalization and show that the spectrum of the quantum-critical fluctuations is of the form postulated in 1989 to give the marginal Fermi-liquid properties. The model solved and the methods devised are likely to be of interest also to other quantum phase transitions.  相似文献   

20.
We study bosons loaded in a one-dimensional optical lattice of twofold p-orbital degeneracy at each site. Our numerical simulations find an anti-ferro-orbital p(x)+ip(y), a homogeneous p(x) Mott-insulator phase, and two kinds of superfluid phases distinguished by the orbital order (anti-ferro-orbital and paraorbital). The anti-ferro-orbital order breaks time-reversal symmetry. Experimentally observable evidence is predicted for the phase transition between the two different superfluid phases. We also discover that the quantum noise measurement is able to provide a concrete evidence of time-reversal symmetry breaking in the first Mott phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号