首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both experimental and computer-simulated magneto-optical (MO) and optical spectroscopies of Co/Pt multilayered films (MLF) with a nearly constant Pt sublayer thickness and variable Co sublayer thickness, as well as pure Co and Pt, and Co0.51Pt0.49 alloy films, have been performed in the energy range 1.1–4.7 eV. The simulations were achieved by solving the multireflection task for various models of the MLF. The comparison between experimental and computer-simulated optical properties of the Co/Pt MLF allowed us to evaluate the thickness of the interfacial regions with the alloyed components. The diagonal and off-diagonal components of the optical conductivity tensor were calculated not only for the pure Co and Co0.51Pt0.49 alloy films, and the whole Co/Pt MLF, but also for the spin-polarized Pt layers in the Co/Pt MLF.  相似文献   

2.
The measurement of thickness profiles of films (Co, Ag, Pt) with an ellipsometer, and the time-of-flight measurement, were used to investigate the spatial distribution of laser-ablated Co, Ag and Pt particles. Near a target, the spatial distribution shows the material dependence: it was observed that Co has the broadest distribution, and Ag has the narrowest distribution. However, at a distance far from the target, the distribution becomes independent of the materials. The time-of-flight measurement reveals that the kinetic energy distribution of ions is anisotropic and Co has a less anisotropic distribution than Ag. This study leads us to the optimum conditions for the fabrication of nm multi-layer (ML) films with good quality, which was confirmed by the fabrication of Co/Pt nm ML films. PACS 52.50Jm; 52.70.Nc; 81.15.Fg; 81.16.Mk; 68.65.Ac  相似文献   

3.
The effects of magnetic field on the shape evolution of ferromagnetic fcc Fe–Co particles in Cu–0.83 at.% Fe–1.37 at.% Co alloy single crystals were examined using magnetic anisotropy measurements. The Cu–Fe–Co single crystals were aged at 993 K for 2 h to 24 h under a magnetic field of 10 T parallel to either the [001] or [011] direction. The magnetic anisotropy was examined by measuring magnetic torque around the (100) plane. It was found that the fcc Fe–Co particles are elongated in the direction parallel to the magnetic field. Furthermore, the elongation along [001] is more remarkable than that along [011]. The results are explained quantitatively by considering the minimization of the sum of the interface energy, elastic strain energy and magnetostatic energy of spheroidal particles.  相似文献   

4.
This paper employs the phase-field method to study the splitting behaviour of a single coherent particle under an applied uniaxiai stress. It finds that the splitting behaviour is greatly influenced by the initial shape of precipitates, the bulk free energy condition, the degree of supersaturation and the ratio of the interfacial energy to the elastic strain energy, etc. The simulated results demonstrate that the aspect ratio of the particle determines whether the splitting can occur and how many split plates can be obtained. The splitting of particle is sensitive to the interracial energy, i.e. the splitting becomes more and more difficult with increasing the ratio of the interracial energy to the elastic strain energy. And increasing the magnitude of the applied stress is favourable to the splitting. The splitting process is also explained from the point of view of the corresponding diffusion potential.  相似文献   

5.
The coercivity of a Co/Pt multilayer with out-of-plane anisotropy can be lowered greatly if it is grown onto an ultrathin NiO underlayer . By making use of this characteristic, a series of samples glass/NiO(10 Å)/[Co(4 Å)/Pt(5 Å)]3/Pt(x Å)/[Co(4 Å)/Pt(5 Å)]3 with different Pt spacer thickness have been prepared to determine the ferromagnetic (FM) coupling between Co layers across the Pt layer. The measurements of major and minor hysteresis loops have shown that the FM coupling between the top and bottom Co/Pt multilayers decreases monotonically with the Pt layer thickness and disappears above the Pt layer thickness of 40 Å. This thickness of 40 Å is much larger than that in the literature. In addition to the FM coupling between the top and bottom Co/Pt multilayers across the Pt spacer, there exists a weak biquadratic coupling, which induces the broad transition of the bottom Co/Pt multilayer.  相似文献   

6.
俱海浪  向萍萍  王伟  李宝河 《物理学报》2015,64(19):197501-197501
采用直流磁控溅射法在玻璃基片上制备了Pt底层和MgO/Pt双底层的Co/Ni多层膜样品, 通过反常霍尔效应研究了不同MgO厚度和退火温度对样品垂直磁各向异性(perpendicular magnetic anisotropy, PMA)的影响. 随着底层中MgO厚度的逐渐增加, 样品的矫顽力也随之增强, 霍尔电阻变化不大; 对样品进行退火处理后发现, 单纯Pt底层的Co/Ni多层膜随着退火温度的升高, 霍尔电阻逐渐降低, 矫顽力则迅速降低, 热稳定性较差; 而当MgO/Pt双底层的样品在200 ℃退火后矫顽力大幅增加, 霍尔电阻略微有所减小, 更高的退火温度使得Co和Ni合金化, 导致多层膜的PMA特征减弱.  相似文献   

7.
张慧云  王荫君 《中国物理》1994,3(10):780-787
Temperature dependences of effective perpendicular anisotropy (PA) Ku and inter-face energy Ks for Co/X(Pt, Au, Ag, Ni) multilayer films(MFs) as well as of spontaneous magnetization Ms for Co/Pt and Co/Au MFs are reported. The dependence of Ks on T dis-tinguishes between Go/Au, Co/Ni and Co/Pt, Co/Ag MFs, i.e., Ks of the former decreases with the increase of T, but it increases for the latter. Co/Pt MFs with the perpendicular anisotropy possess a large enhancement of Ms at low temperature, but there is not any en-hancement for Co/Au MFs. We have discussed the source of PA in Co/Au and Co/Pt MFs and speculated that the strain due to the lattice mismatch may be the main cause of PA in Co/Au MFs, but it is not for Co/Pt MFs.  相似文献   

8.
俱海浪  李宝河  吴志芳  张璠  刘帅  于广华 《物理学报》2015,64(9):97501-097501
采用直流磁控溅射法在玻璃基片上制备了Pt底层的Co/Ni多层膜样品, 对影响样品垂直磁各向异性的各因素进行了调制, 通过样品的反常霍尔效应系统的研究了Co/Ni多层膜的垂直磁各向异性. 结果表明, 多层膜中各层的厚度及周期数对样品的反常霍尔效应和磁性有重要的影响. 通过对多层膜各个参数的调制优化, 最终获得了具有良好的垂直磁各向异性的Co/Ni多层膜最佳样品Pt(2.0)/Co(0.2)/Ni(0.4)/Co(0.2)/Pt(2.0), 经计算, 该样品的各向异性常数Keff 达到了3.6×105 J/m3, 说明样品具备良好的垂直磁各向异性. 最佳样品磁性层厚度仅为0.8 nm, 样品总厚度在5 nm以内, 可更为深入的研究其与元件的集成性.  相似文献   

9.
The spin asymmetry of elastic and inelastic scattering of nonequilibrium holes injected into Co thin films is examined using a p-type magnetic tunnel transistor. Spin-dependent transmission yields a positive or negative magnetocurrent depending on Co thickness and hole energy. Up to a critical thickness of about 3 nm, (quasi)elastic scattering dominates with a short attenuation length (<1 nm) and preferential attenuation of holes in the majority spin bands, consistent with spin-wave emission. At a larger Co thickness, inelastic scattering dominates with a larger attenuation length ( approximately 4 nm) and opposite spin asymmetry.  相似文献   

10.
付艳强  刘洋  金川  于广华 《物理学报》2009,58(11):7977-7982
采用磁控溅射的方法制备了Co/FeMn/Co多层膜,研究了Co(底部)/FeMn和FeMn/Co(顶部)界面插入Pt层后磁矩的变化情况.通过测量磁滞回线可知,Co(底部)/FeMn界面的Pt插层改变了体系的饱和磁化强度s,随着Co层厚度(tCo)的增加s不断趋近于Co块体结构理论值1440 kA/m.这是因为Co(底部)/FeMn界面产生了净磁矩,而界面处的Pt插层可以减少这种净磁矩的产生.但是 关键词: 磁性多层膜 垂直磁各向异性 交换耦合  相似文献   

11.
Several sensing concepts using nanostructures prepared by focused-electron-beam-induced deposition have been developed over the last years. Following work on highly miniaturized Hall sensors for magnetic sensing with soft magnetic Co, strain and force sensing based on nano-granular platinum–carbon structures (Pt(C)) was introduced. Very recently, the capability of nano-granular Pt(C) structures to detect the presence of adsorbate water layers by conductance modulations was demonstrated. For magnetic and strain sensing, the underlying physical mechanisms of the sensing effect have been analyzed in detail and are now quite well understood. This is not the case for the adsorbate layer-induced conductance modulation effect. Here, we provide a theoretical framework that allows for a semi-quantitative understanding of the observed water-sensing effect. We show how the near-interface renormalization of the Coulomb charging energy in the nano-granular metal caused by the dielectric screening of the polarizable adsorbate layer leads to a conductance modulation. The model can account for the conductance modulation observed in the water adsorbate experiments and can also be applied to understand similar effects caused by near-interface dielectric anomalies of ferroelectric thin films on top of nano-granular Pt(C). Our findings provide a pathway toward optimized nano-granular layer structures suitable for a wide range of dielectric or local potential sensing applications.  相似文献   

12.
The activation of metallorganic chemical vapor deposition-grown Mg-doped GaN by N2 annealing with thin Co and Pt films has been investigated. The Hall effect measurements revealed that both the Co and Pt films enhance activation of Mg acceptors as catalysts at low temperatures. A maximum hole concentration of p-type GaN was achieved at annealing temperature of 600 °C for the samples activated with both the Co and Pt films. It was also revealed that the activation of the acceptors is strongly affected by the thickness of the Co film.  相似文献   

13.
Pt/Co/Hf multilayers were prepared by magnetron sputtering, and the magnetic anisotropy was effectively regulated by Hf thickness and heat treatment in Pt/Co/Hf films. The interface microstructures were characterized. The influence of the interface microstructure on magnetic properties was studied. The results show that the magnetic anisotropy in Pt/Co/Hf films is closely related to the interface microstructure, which is influenced by Hf thickness and the heat treatment temperature. Microstructure analysis shows that after the Pt(3)/Co(1.5)/Hf(1) film is heat-treated, the CoOx content increases, more CoPt(111) forms, the interface is smoother and sharper, and the roughness of the Co/Hf interface decreases. Several factors work together to cause the magnetic anisotropy of the sample to change from in-plane magnetic anisotropy (IMA)to perpendicular magnetic anisotropy (PMA).  相似文献   

14.
[Co(30 Å)/Pt(x Å)]20 multilayers with the Pt layer thicknesses varying from 5 Å to 20 Å were characterized structurally by high angle X-ray diffraction, X-ray reflectivity, X-ray absorption spectroscopy and magnetically by X-ray magnetic circular dichroism. It is found that the structure and magnetic properties of Pt have a strong correlation with the Pt layer thickness. The 20 Å thickness Pt layer is not almost influenced by the adjacent Co layer and the nearest neighbors are dominated by Pt-Pt shells. With decreasing Pt layer thickness, the nearest neighbors are gradually dominated by Pt-Co shells and the Pt-Co intermixing regions also remarkable increase at the interfaces, especially for the 5 Å thickness Pt layer. The orbital and spin magnetic moments as well as the ratio morb/mspin all decrease systematically with increasing Pt layer thickness, indicating that the interface atoms are polarized by direct Pt-Co hybridization, but that the adjacent layers are polarized by Pt-Pt interactions.  相似文献   

15.
Chunjie Yan 《中国物理 B》2023,32(1):17503-017503
We systematically investigated the Ni and Co thickness-dependent perpendicular magnetic anisotropy (PMA) coefficient, magnetic domain structures, and magnetization dynamics of Pt(5 nm)/[Co($t_{\rm Co}$)/Ni($t_{\rm Ni}$)]$_{5}$/Pt(1 nm) multilayers by combining the four standard magnetic characterization techniques. The magnetic-related hysteresis loops obtained from the field-dependent magnetization $M$ and anomalous Hall resistivity (AHR) $\rho_{{xy}}$ showed that the two serial multilayers with $t_{\rm Co} = 0.2$ nm and 0.3 nm have the optimum PMA coefficient $K_{\rm U}$ as well as the highest coercivity $H_{\rm C}$ at the Ni thickness $t_{\rm Ni}= 0.6 $ nm. Additionally, the magnetic domain structures obtained by magneto-optic Kerr effect (MOKE) microscopy also significantly depend on the thickness and $K_{\rm U}$ of the films. Furthermore, the thickness-dependent linewidth of ferromagnetic resonance is inversely proportional to $K_{\rm U}$ and $H_{\rm C}$, indicating that inhomogeneous magnetic properties dominate the linewidth. However, the intrinsic Gilbert damping constant determined by a linear fitting of the frequency-dependent linewidth does not depend on the Ni thickness and $K_{\rm U}$. Our results could help promote the PMA [Co/Ni] multilayer applications in various spintronic and spin-orbitronic devices.  相似文献   

16.
Wenqiang Wang 《中国物理 B》2022,31(9):97504-097504
We study inserting Co layer thickness-dependent spin transport and spin-orbit torques (SOTs) in the Pt/Co/Py trilayers by spin-torque ferromagnetic resonance. The interfacial perpendicular magnetic anisotropy (IPMA) energy density ($K_{\rm s}= 2.7 $ erg/cm$^{2}$, 1 erg = 10$^{-7}$ J), which is dominated by interfacial spin-orbit coupling (ISOC) in the Pt/Co interface, total effective spin-mixing conductance $(G_{\mathrm{eff,tot}}^{\mathrm{\uparrow \downarrow }}=\mathrm{0.42\times }{10}^{15} \mathrm{\Omega }^{-1}\cdot\mathrm{m}^{-2}$) and two-magnon scattering ($\beta_{\mathrm{TMS}}= 0.46 {\mathrm{nm}}^{2}$) are first characterized, and the damping-like torque ($\xi_{\mathrm{DL}}= 0.103$) and field-like torque ($\xi _{\mathrm{FL}}=-0.017$) efficiencies are also calculated quantitatively by varying the thickness of the inserting Co layer. The significant enhancement of $\xi_{\mathrm{DL}}$ and $\xi_{\mathrm{FL}}$ in Pt/Co/Py than Pt/Py bilayer system originates from the interfacial Rashba-Edelstein effect due to the strong ISOC between Co-3d and Pt-5d orbitals at the Pt/Co interface. Additionally, we find a considerable out-of-plane spin polarization SOT, which is ascribed to the spin anomalous Hall effect and possible spin precession effect due to IPMA-induced perpendicular magnetization at the Pt/Co interface. Our results demonstrate that the ISOC of the Pt/Co interface plays a vital role in spin transport and SOTs-generation. Our finds offer an alternative approach to improve the conventional SOTs efficiencies and generate unconventional SOTs with out-of-plane spin polarization to develop low power Pt-based spintronic via tailoring the Pt/FM interface.  相似文献   

17.
We theoretically and experimentally analyze the pinning of a magnetic domain wall (DW) at engineered anisotropy variations in Pt/Co/Pt strips with perpendicular magnetic anisotropy. An analytical model is derived showing that a step in the anisotropy acts as an energy barrier for the DW. Quantitative measurements are performed showing that the anisotropy can be controlled by focused ion beam irradiation with Ga ions. This tool is used to experimentally study the field-induced switching of nanostrips which are locally irradiated. The boundary of the irradiated area indeed acts as a pinning barrier for the domain wall and the pinning strength increases with the anisotropy difference. Varying the thickness of the Co layer provides an additional way to tune the anisotropy, and it is shown that a thinner Co layer gives a higher starting anisotropy thereby allowing tunable DW pinning in a wider range of fields. Finally, we demonstrate that not only the anisotropy itself, but also the width of the anisotropy barrier can be tuned on the length scale of the domain wall.  相似文献   

18.
The evolution of the atomic structure of LaAlO_{3} grown on SrTiO_{3} was investigated using surface x-ray diffraction in conjunction with model-independent, phase-retrieval algorithms between two and five monolayers film thickness. A depolarizing buckling is observed between cation and oxygen positions in response to the electric field of polar LaAlO_{3}, which decreases with increasing film thickness. We explain this in terms of competition between elastic strain energy, electrostatic energy, and electronic reconstructions. Based on these structures, the threshold for formation of a two-dimensional electron system at a film thickness of 4 monolayers is quantitatively explained. The findings are also qualitatively reproduced by density-functional-theory calculations.  相似文献   

19.
Kelvin probe force microscopy (KFM) and conductive atomic force microscopy (C‐AFM) together with micro X‐ray photoelectron spectroscopy (XPS) were performed for the stacking structure comprising of the transition metal oxide Co–O and metal electrode, which exhibits large reproducible resistance switching. The application of the external voltage by the C‐AFM cantilever decreases the resistance of Co–O, which well accords with the non‐polar forming process observed in the Pt/Co–O/Pt trilayer, known as the candidate of resistance random access memory (ReRAM). Furthermore, the KFM and micro XPS experimentally revealed that the local reductive reaction of Co–O possibly nucleates the defect related energy levels which dominates the current conduction in the low resistance state. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Amorphization of epitaxial Co thin films grown on top of a Pt(111) surface has been studied by surface X-ray diffraction after deposition of Gd overlayers. The results indicate strong differences of the disordering process depending on the thickness of the Co film. First basic difference is that thick Co films (15 atomic layers) are only partially amorphized by 4 atomic layers of Gd on top of them, whereas thinner Co films (5 atomic layers) are completely disordered by just 2 atomic layers of Gd. Moreover, amorphization by Gd overlayers induces different stress relaxation processes in both cases. For 15 atomic layers thick Co films a preferential amorphization of the more strained Co grains is observed, leading to an effective relaxation of about ? 0.5% of the in-plane lattice parameter during amorphization, approaching its relaxed value. On the contrary, for 5 atomic layers thick Co films, the initial steps of disordering are accompanied by a stronger increase of the in-plane lattice constant, by about 1.4%, typical of Co–Pt interface alloy formation, followed by a complete amorphization. Furthermore, the magnetic characterization, carried out by magneto-optical Kerr effect and resonant magnetic surface X-ray diffraction, strongly supports that the amorphization of thin Co films is changing the nature of the Co/Pt interface. In particular, as Gd overlayers are deposited, and the amorphization proceeds, the structural disordering of the Co/Pt interface flips its characteristic perpendicular magnetic anisotropy toward in-plane orientation before the complete magnetic depolarization of the interface Pt atoms is reached. All these results confirm a marked dependence of amorphization processes on film thickness, which can be related to the enhanced influence of the nearby film/substrate interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号