首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Experiments on mechanical oscillator arrays show that complete inphase synchronization can emerge in a matter of minutes, even for fairly large arrays started from random initial conditions. At the same time, one expects complete inphase synchronization to become increasingly difficult to observe as array size grows. We explore the conditions under which inphase synchronization prevails with the help of a simple, somewhat stylized, iterative map model which embodies the problem’s key dynamical features.  相似文献   

2.
We experimentally study dispersive shock waves in nonlinear waveguide arrays. In contrast with gap solitons, the nonlinearity here pushes the propagation constant further into the transmission bands, facilitating Bloch mode coupling and energy transport. We directly observe this coupling, both within and between bands, by recording intensity in position space and power spectra in momentum space.  相似文献   

3.
We consider the transient behavior of a large linear array of coupled linear damped harmonic oscillators following perturbation of a single element. Our work is motivated by modeling the behavior of flocks of autonomous vehicles. We first state a number of conjectures that allow us to derive an explicit characterization of the transients, within a certain parameter regime Ω. As corollaries we show that minimizing the transients requires considering non-symmetric coupling, and that within Ω the computed linear growth in N of the transients is independent of (reasonable) boundary conditions.  相似文献   

4.
We study both theoretically and experimentally the nonlinear surface waves at the edge of curved waveguide arrays with a surface defect. We show that the nonlinear coupling between different linear modes supported by the array can lead to beam switching to different output waveguides with increasing of the nonlinearity strength. Our experimental observations are in good agreement with the numerical modelling.  相似文献   

5.
We consider a ring of identical or near-identical coupled periodic oscillators in which the connections have randomly heterogeneous strength. We use the master stability function method to determine the possible patterns at the desynchronization transition that occurs as the coupling strengths are increased. We demonstrate Anderson localization of the modes of instability and show that such localized instability generates waves of desynchronization that spread to the whole array. Similar results should apply to other networks with regular topology and heterogeneous connection strengths.  相似文献   

6.
We study two-color parametric nonlinear modes in waveguide arrays with a quadratic nonlinear response. We predict theoretically and observe experimentally a new type of phase transition manifested in an abrupt power-controlled change of the mode structure from unstaggered to staggered, due to the interplay of localization and synchronization in parametrically driven discrete systems.  相似文献   

7.
A new powerful approximate approach for the theoretical analysis of Bragg scattering in oblique strip-like periodic arrays with the scattered wave propagating almost parallel to the array boundaries – grazing-angle scattering (GAS) – is introduced and justified. This approach is based on allowance for the diffractional divergence of the scattered wave by means of the parabolic equation of diffraction and Fourier analysis. The divergence is demonstrated to be an intrinsic physical cause of GAS. Detailed theoretical analysis of steady-state GAS is carried out for bulk and guided optical modes. It is demonstrated that the most interesting feature of GAS in arrays of width that is greater than a critical width is a unique combination of two strong simultaneous resonances with respect to frequency and angle of scattering. In such wide arrays, GAS is demonstrated to be not only unusually sensitive to angle of scattering, but also to small variations of array width and grating amplitude. Entire concentration of the resonantly strong scattered wave inside the array is shown to be possible. A relationship between GAS, conventional Bragg scattering, and extremely asymmetrical scattering (i.e. where the scattered wave propagates parallel to the array boundaries) is analysed. Applicability conditions for the used approximations and obtained results are derived and discussed.  相似文献   

8.
Interaction of two identical excitable spiral waves in a bilayer system is studied. We find that the two spiral waves can be completely synchronized if the coupling strength is sufficiently large. Prior to the complete synchronization, we find a new type of weak synchronization between the two coupled systems, i.e., the spiral wave of the driven system has the same geometric shape as the spiral wave of the driving system but with a much lower amplitude. This general behavior, called projective synchronization of two spiral waves, is similar to projective synchronization of two coupled nonlinear oscillators, which has been extensively studied before. The underlying mechanism is uncovered by the study of pulse collision in one-dimensional systems.  相似文献   

9.
We show that in the long wavelength limit, water waves propagate through an array of bottom-mounted vertical cylinders as if the water has an effective depth and effective gravitational constant that depends on the filling ratio of the cylinders, leading to refraction phenomena that can be described by analytic formulas. The results are obtained with rigorous homogenization techniques, as well as the multiple scattering formalism that gives full dispersion relationships. This phenomenon provides a mechanism to control the flow of ocean wave energy, as exemplified by a water-wave focusing lens.  相似文献   

10.
11.
The observation of nonlinear staggered surface states at the interface between a substrate and a one-dimensional self-defocusing nonlinear waveguide array is reported. Launching of staggered input beams of different power in the first channel of the array results in formation of localized structures in different channels. Our experimental results are confirmed numerically.  相似文献   

12.
The chaotic synchronization of two electron-wave media with interacting backward waves and cubic phase nonlinearity is investigated in the paper. To detect the chaotic synchronization regime we use a new approach, the so-called time scale synchronization [Chaos 14, 603-610 (2004)]. This approach is based on the consideration of the infinite set of chaotic signals' phases introduced by means of continuous wavelet transform. The complex space-time dynamics of the active media and mechanisms of the time scale synchronization appearance are considered.  相似文献   

13.
Large amplitude multiphase solutions of the periodic Korteweg-de Vries equation are excited and controlled by a small forcing. The approach uses passage through an ensemble of resonances and subsequent multiphase self-locking of the system with eikonal-type perturbations. The synchronization of each phase in the Korteweg-de Vries wave is robust, provided the corresponding driving amplitude exceeds a threshold.  相似文献   

14.
A new MBE technique based on the possibility to maintain undamping RHEED oscillations by periodic increase of the surface supersaturation synchronized with the oscillations is presented. Surface supersaturation may be increased by any way that is suitable for a particular case. The technique has been referred to by the authors as MBE with nucleation synchronization and allows epistructures of any thickness to be grown with in situ control of their properties by RHEED or automatic ellipsometry. It can be applied both to elementary semiconductors and compounds like AIIIBV, AIIBVI, etc.  相似文献   

15.
Hu X  Chan CT  Ho KM  Zi J 《Physical review letters》2011,106(17):174501
Based on analytic derivations and numerical simulations, we show that near a low resonant frequency water waves cannot propagate through a periodic array of resonators (bottom-mounted split tubes) as if water has a negative effective gravitational acceleration g(e) and positive effective depth h(e). This gives rise to a low-frequency resonant band gap in which water waves can be strongly reflected by the resonator array. For a damping resonator array, the resonant gap can also dramatically modify the absorption efficiency of water waves. The results provide a mechanism to block water waves and should find applications in ocean wave energy extraction.  相似文献   

16.
《Physics letters. A》2006,353(4):318-325
This Letter investigates the global exponential synchronization in arrays of coupled identical delayed neural networks (DNNs) with constant and delayed coupling. By referring to Lyapunov functional method and Kronecker product technique, some sufficient conditions are derived for global synchronization of such systems. These new synchronization criteria offer some adjustable matrix parameters, which is of important significance in the design and applications of such coupled DNNs, and the results improve and extend the earlier works. Finally, an example is given to illustrate the theoretical results.  相似文献   

17.
We have proposed a mechanism of interaction between two non-linear dissipative oscillators, leading to exact and robust anti-phase and in-phase synchronization. The system we have analyzed is a model for the Huygens’s two pendulum clocks system, as well as a model for synchronization mediated by an elastic media. Here, we extend these results to arrays, finite or infinite, of conservative pendula coupled by linear elastic forces. We show that, for two interacting pendula, this mechanism leads always to synchronized anti-phase small amplitude oscillations, and it is robust upon variation of the parameters. For three or more interacting pendula, this mechanism leads always to ergodic non-synchronized oscillations. In the continuum limit, the pattern of synchronization is described by a quasi-periodic longitudinal wave.  相似文献   

18.
A new type of Bragg scattering – double-resonant extremely asymmetrical scattering (DEAS) of optical waves in oblique, non-uniform, periodic Bragg arrays is analysed theoretically and numerically. Steady-state DEAS is demonstrated to occur in the extremely asymmetrical geometry where the scattered wave propagates parallel to the front array boundary. The non-uniform array is represented by two joint uniform, strip-like, periodic arrays with different phases (and amplitudes) of the grating. DEAS is characterised by a unique combination of two simultaneous resonances with respect to frequency and phase variation at the interface between the joint arrays. As a result, a strong resonant increase in the scattered wave amplitude compared with the amplitude of the incident wave is predicted and investigated theoretically. The amplitude of the incident wave inside the array is also shown to increase resonantly in the middle of the array where the step-like variation in the phase of the grating takes place. The effect of different widths of the joint arrays, and magnitudes of the grating amplitudes on DEAS is analysed. Physical explanations of this type of scattering, based on the diffractional divergence of the scattered wave from one of the joint arrays into another, are presented.  相似文献   

19.
Wangli He  Jinde Cao 《Physics letters. A》2009,373(31):2682-2694
Global synchronization in arrays of coupled networks with one single time-varying delay coupling is investigated in this Letter. A general linear coupled network with a time-varying coupling delay is proposed and its global synchronization is further discussed. Some sufficient criteria are derived based on Lyapunov functional and linear matrix inequality (LMI). It is shown that under one single delay coupling, the synchronized state changes, which is different from the conventional synchronized solution. Moreover, the degree of the nodes and the inner delayed coupling matrix play key roles in the synchronized state. In particular, the derivative of the time-varying delay can be any given value. Finally, numerical simulations are given to illustrate the theoretical results.  相似文献   

20.
Chaotic synchronization of two electron-wave media with interacting counterpropagating waves and cubic phase nonlinearity (transverse-field backward-wave oscillators) is studied. Analysis is based on considering a continuous set of the phases of a chaotic signal. The parameters of chaotic synchronization in a system of unidirectionally coupled backward-wave oscillators are found, and the complex dynamics of establishing the chaotic synchronization conditions in an active medium is investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号