首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the results of the first reduced model simulations of the nonlinear development of the two-plasmon decay instability in an inhomogeneous plasma, including properties of the 3/2 harmonic emission. A sharp increase in radiation and Langmuir turbulence fluctuation levels occurs above a threshold laser intensity that depends on initial fluctuation levels. We study the competition between the linear propagation of Langmuir waves in the density gradient and the nonlinear saturation due to the Langmuir decay instability. The secondary decay Langmuir waves can provide the dominant source of the radiation and are essential to explain experiments.  相似文献   

2.
Results are presented from theoretical studies and computer simulations of the resonant excitation of Langmuir waves during the ionization of a homogeneous gas by high-intensity laser radiation. Two mechanisms for the formation of nonuniform resonant structures in the discharge are examined: plasma-resonance ionization instability, resulting in the density modulation along the electric field vector, and gas breakdown in the field of a transversely inhomogeneous laser beam (a Bessel beam produced by an axicon lens). In both cases, the transition of the plasma density through the critical value is accompanied by the generation of intense Langmuir waves, the formation of fast ionization fronts, and the appearance of long-lived quasi-turbulent states.  相似文献   

3.
Inflation produces a primordial spectrum of gravity waves in addition to the density perturbations which seed structure formation. We compute the signature of these gravity waves in the large scale shear field. The shear can be divided into a gradient mode (G or E) and a curl mode (C or B). The latter is produced only by gravity waves, so the observations of a nonzero curl mode could be seen as evidence for inflation. We find that the expected signal from inflation is small, peaking on the largest scales at l(l+1)C(l)/2pi<10(-11) at l=2 and falling rapidly thereafter. Even for an all-sky deep survey, this signal would be below noise at all multipoles.  相似文献   

4.
A relativistic annular electron beam passing through a high-density plasma excites Langmuir waves via Cerenkov interaction. The Langmuir waves are backscattered off ions via nonlinear ion Landau damping. At moderately high amplitudes these waves are parametrically up-converted by the beam into high-frequency electromagnetic radiation, as observed in some recent experiments. A nonlocal theory of this process is developed in a cylindrical geometry. It is seen that the growth rate of the Langmuir wave scales as one-third the power of beam density. The growth rate of parametric instability scales as one-fourth the power of beam density and the square root of beam thickness  相似文献   

5.
Although tyre/road noise has been a research subject for more than three decades, there is still no consensus in the literature as to which waves on a tyre are mainly responsible for the radiation of sound during rolling. Even the free vibrational behaviour of a stationary (non-rotating) tyre, not in contact with the ground, is still not well understood in the mid- and high-frequency ranges. Thus, gaining an improved understanding of this behaviour is a natural first step towards illuminating the question of which waves on a rolling tyre contribute to sound radiation. This is the topic of the present paper, in which a model based on the waveguide finite element method (WFEM) is used to study free wave propagation, on a stationary tyre, in the range 0-1500 Hz. In the low-frequency region (0-300 Hz), wave propagation is found to be rather straightforward, with two main wave-types present. Both have cross-section modes involving a nearly rigid motion of the belt. For higher frequencies (300-1500 Hz) the behaviour is more complex, including phenomena such as ‘curve veering’ and waves for which the phase speed and group speed have opposite signs. Wave-types identified in this region include (i) waves involving mainly sidewall deformation, (ii) belt bending waves, (iii) a wave with significant extensional deformation of the central belt region and (iv) a wave with a ‘breathing’ cross-section mode. The phase speed corresponding to found waves is computed and their radiation efficiency is discussed, assuming free-field conditions. In a future publication, the tyre model will be used in conjunction with a contact model and a radiation model to investigate the contribution of these waves to radiated sound during rolling.  相似文献   

6.
The growth rates of the Langmuir and electromagnetic radiation due to the plasma-maser instability in multicomponent unmagnetized plasmas with stationary charged particulates are obtained. The up-conversion of the wave energy from ion-acoustic oscillations to the test Langmuir and electromagnetic waves is much enhanced owing to the enhanced accelaration of electrons by the dust ion-acoustic mode. The results could be important for the interpretation of high-frequency waves in space and astrophysical dusty plasmas.  相似文献   

7.
We describe results from the first statistical study of waveform capture data during 67 interplanetary (IP) shocks with Mach numbers ranging from approximately 1-6. Most of the waveform captures and nearly 100% of the large amplitude waves were in the ramp region. Although solitary waves, Langmuir waves, and ion acoustic waves (IAWs) are all observed in the ramp region of the IP shocks, large amplitude IAWs dominate. The wave amplitude is correlated with the fast mode Mach number and with the shock strength. The observed waves produced anomalous resistivities from approximately 1-856 Omega.m (approximately 10(7) times greater than classical estimates.) The results are consistent with theory suggesting IAWs provide the primary dissipation for low Mach number shocks.  相似文献   

8.
周磊  唐昌建 《物理学报》2009,58(12):8254-8259
通过理论研究与数值计算,不均匀等离子体中Langmuir波与电磁波的相互作用及其线性模式转换规律得到了充分的展示.导出了不均匀等离子体中的电磁色散关系,研究了入射电磁波或Langmuir波在通过不均匀等离子体的过程中发生转换的物理过程,以及波的传播矢量随空间坐标变化的关系,并对电磁波与Langmuir波相互作用的机理进行了讨论.研究结果对密度梯度所驱动的等离子体波产生电磁辐射的研究具有重要意义. 关键词: 电磁波 Langmuir波 不均匀等离子体 线性模式转换  相似文献   

9.
A theoretical study is made on the generation mechanism of Langmuir mode wave in the presence of kinetic Alfvén wave turbulence in a magnetized plasma on the basis of plasma-maser interaction. It is shown that a test high frequency Langmuir mode wave is unstable in the presence of low frequency kinetic Alfvén wave turbulence. The growth of the Langmuir wave occurs due to direct and polarization coupling terms. Because of the universal existence of the kinetic Alfvén waves in large scale plasmas, the results have potential importance in space and astrophysical radiation processes.  相似文献   

10.
Frequency upshifting of electromagnetic radiation impinging on a relativistically moving ionization front is theoretically investigated. Unlike previous works in this field treating the case of normal incidence and qualitatively similar case of oblique incidence of a transverse electric polarized wave, oblique incidence of a transverse magnetic polarized wave on the front is considered. The peculiarities of the case under consideration are connected with the generation of Langmuir waves behind the front and Brewster's phenomenon. We present a complete analysis of the incident wave transformation including analysis of the frequencies and amplitudes of the waves excited ahead of and behind the front. Special emphasis is made on energy transformation in the case when a wave packet is incident on the front. In particular, we show that even for negligible angles of incidence, energy losses via transformation into Langmuir waves may be very high (up to ~60%). In general, generation of Langmuir waves may play a significant role in the plasma-based radiation sources with relativistic ionization fronts  相似文献   

11.
In this study, we present linear analysis of electrostatic counter-streaming instability in spin-polarized electron–positron–ion (e-p-i) plasma. With the aid of the separate spin evolution-quantum hydrodynamic (SSE-QHD) model, we derive the dispersion relation of counter-streaming instability. We numerically solve the dispersion and find four wave solutions: Langmuir wave, positron acoustic mode, and two electron and positron spin-dependent waves. It is noted that coupling of streaming and spin effects excites Langmuir instability and positron acoustic mode instability. However, in the absence of spin effect, only Langmuir instability will survive in e-p-i plasma. We have also discussed the effects of positron concentration, streaming speed, and spin polarization on the real frequency of waves and the growth rate. The present study may be helpful for understanding longitudinal wave propagation and instabilities in dense magnetized environments.  相似文献   

12.
The problem of the electromagnetic plasma radiation near the electron plasma frequency ?pe is studied in the absence of an external magnetic field. Maxwell's equations together with the fluid equations, which include thermal effects, are solved for an infinite geometry as well as for a finite geometry, and the problem of the eigenmodes at a plasma frequency ? ?pe is studied. The excitation of these modes by a small density relativistic beam is discussed. It is shown that the presence of a small density beam with finite ?o/c (where ?o is the beam velocity and c the velocity of light in a vacuum) in a plasma of finite thermal velocity, can couple linearly the plasma oscillations excited by the beam with the electromagnetic plasma mode at ?pe. It is also shown that surface waves at a frequency ? ?pe can be excited by the beam.  相似文献   

13.
B Buti  M Mohan  S K Alurkar 《Pramana》1986,27(1-2):219-231
The evolution of nonlinear Langmuir waves in the interplanetary medium is investigated by appropriately accounting for the random density irregularities of the medium. A pair of modified Zakharov equations, which describe these waves, is solved numerically as an initial value problem for large scale (≫ 102 km) initial pertubations. For an ion acoustic-Langmuir solitary wave, the random irregularities damp the Langmuir wave by way of scattering and let the ion density perturbation radiate away in a few days. However an initial solitary or shock-like Langmuir wave excites the ion density perturbations within a fraction of a second, and then itself gets damped. These effects will strongly decelerate the collapse of large scale Langmuir waves. The possibility of detecting these processes, by means of interplanetary scintillation, is discussed. The authors felicitate Prof. D S Kothari on his eightieth birthday and dedicate this paper to him on this occasion.  相似文献   

14.
A unified account is given of the normal mode theory of homogeneous unmagnetized plasma. Electron (Langmuir), ion sound and electromagnetic waves are treated in stable and (Penrose) unstable plasma with the Van Kampen-Case formalism, using generalized functions. Simplified formulae are derived for second-order Langmuir waves, taking full account of free-streaming effects.  相似文献   

15.
We investigate the nonlinear evolution of the backward stimulated Raman scattering (BSRS) in the regime where the nonlinear saturation mechanism is the Langmuir decay instability resulting from the coupling of the BSRS-generated Langmuir wave with the ion acoustic waves. We present numerical results obtained with a fluid-type code in one- and two-dimensional spatial dimensions, in the case of an inhomogeneous plasma. The plasma density is under quarter-critical and depends linearly on the longitudinal spatial coordinate, in the regime where the Rosenbluth gain factor for the amplitude, denoted as G(Ros), is in the range pi/2< or =G_(Ros)< or =6. We observe that the Langmuir decay instability is able to suppress the gradient stabilization and restore the absolute nature of BSRS, thus leading to a significantly increased BSRS reflectivity.  相似文献   

16.
An asymmetric quantum well in graphene can act as a slab waveguide for electron waves in a manner analogous to the electromagnetic waves in dielectrics. Guided modes and the probability current density are analyzed in the graphene electron waveguide induced by asymmetric electrostatic potential. The modes in an asymmetric graphene waveguide include guided modes, “cover modes”, “substrate modes” and “radiation modes”. The conditions for a guided mode are quantified. It is found that the fundamental mode is absent when both the Klein tunneling and classical motion are present. The confinement of electrons for lower order mode is stronger than for higher order mode. We hope that these characteristics in asymmetric graphene waveguide can provide potential applications in graphene-based waveguide devices.  相似文献   

17.
研究了尘埃等离子体中尘埃声波(DAW)和尘埃离子声波(DIAW)对朗缪尔波的非线性调制。在小而有限振幅极限下,得到了朗缪尔波的包络孤立子。对于朗缪尔波与尘埃声波的非线性耦合,包络孤立子存在两个速度传播区;而对于与尘埃离子声波的耦合,只有一个传播区  相似文献   

18.
The regime of strong Langmuir turbulence characterized by the plasma nonisothermality and by the presence of an appreciable non-Maxwellian hot-electron component was experimentally studied. Turbulence was excited in the preliminary produced plasma by the relativistic electron beam. Thomson scattering of laser IR radiation served as the main diagnostic method. The spatial spectra of the Langmuir turbulence and of the attendant ion-sound turbulence were studied using Thomson collective scattering. Thomson incoherent scattering was used for studying the plasma electron distribution function and searching for the local dips of plasma density. Stark spectroscopy of turbulent microfields and the method of observation of plasma radiation at the double plasma frequency were also used. Based on the experimental data, the mechanism of Langmuir oscillation damping by plasma electrons was analyzed. The Langmuir wave conversion induced by the ion-sound turbulence is the most probable channel for energy transfer from the turbulence to plasma electrons, the low-frequency fluctuations being the direct consequence of the strong Langmuir turbulence.  相似文献   

19.
Nonlinear coupling between Langmuir waves with finite amplitude dispersive dust acoustic perturbations is considered. It is shown that the interaction is governed by a pair of coupled nonlinear differential equations. Numerical results reveal the formation of Langmuir envelope solitons composed of the dust density depression created by the ponderomotive force of bell-shaped Langmuir wave envelops. The associated ambipolar potential is positive. The present nonlinear theory should be able to account for the trapping of large amplitude Langmuir waves in finite amplitude dust density holes. This scenario may appear in Saturn's dense rings, and the Cassini spacecraft should be able to observe fully nonlinear cavitons, as presented herein. Furthermore, we propose that new electron-beam plasma experiments should be conducted to verify our theoretical prediction.  相似文献   

20.
Freely propagating electrostatic waves (free modes) are observed to be produced by intense, localized field structures in laboratory measurements performed in an unmagnetized plasma in a state of strong Langmuir turbulence. The freely traveling waves conform to the Langmuir dispersion relation and have an average frequency which is approximately 11% higher than the average frequency of the localized field structures. The observations are consistent with the predictions of strong Langmuir turbulence theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号