首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
《Comptes Rendus Physique》2016,17(7):729-739
The techniques of microwave quantum optics are applied to collective spin excitations in a macroscopic sphere of a ferromagnetic insulator. We demonstrate, in the single-magnon limit, strong coupling between a magnetostatic mode in the sphere and a microwave cavity mode. Moreover, we introduce a superconducting qubit in the cavity and couple the qubit with the magnon excitation via the virtual photon excitation. We observe the magnon–vacuum-induced Rabi splitting. The hybrid quantum system enables generation and characterization of non-classical quantum states of magnons.  相似文献   

2.
We study optical schemes for generating both a displaced photon and a displaced qubit via conditional measurement. Combining one mode prepared in different microscopic states (one-mode qubit, single photon, vacuum state) and another mode in macroscopic states (coherent state, single photon added coherent state), a conditional state in the other output mode exhibits properties of a superposition of the displaced vacuum and a single photon. We propose to use the displaced qubit and entangled states composed of the displaced photon as components for quantum information processing. Basic states of such a qubit are distinguishable from each other with high fidelity. We show that the qubit reveals both microscopic and macroscopic properties. Entangled displaced states with a coherent phase as an additional degree of freedom are introduced. We show that additional degree of freedom enables to implement complete Bell state measurement of the entangled displaced photon states.  相似文献   

3.
High fidelity single shot qubit state readout is essential for many quantum information processing protocols. In superconducting quantum circuit, the qubit state is usually determined by detecting the dispersive frequency shift of a microwave cavity from either transmission or reflection. We demonstrate the use of constructive interference between the transmitted and reflected signal to optimize the qubit state readout, with which we find a better resolved state discrimination and an improved qubit readout fidelity. As a simple and convenient approach, our scheme can be combined with other qubit readout methods based on the discrimination of cavity photon states to further improve the qubit state readout.  相似文献   

4.
We investigate a hybrid quantum circuit where ensembles of cold polar molecules serve as long-lived quantum memories and optical interfaces for solid state quantum processors. The quantum memory realized by collective spin states (ensemble qubit) is coupled to a high-Q stripline cavity via microwave Raman processes. We show that, for convenient trap-surface distances of a few microm, strong coupling between the cavity and ensemble qubit can be achieved. We discuss basic quantum information protocols, including a swap from the cavity photon bus to the molecular quantum memory, and a deterministic two qubit gate. Finally, we investigate coherence properties of molecular ensemble quantum bits.  相似文献   

5.
We study a teleportation protocol of an unknown macroscopic qubit by means of a quantum channel composed of the displaced vacuum and single-photon states. The scheme is based on linear optical devices such as a beam splitter and photon number resolving detectors. A method based on conditional measurement is used to generate both the macroscopic qubit and entangled state composed from displaced vacuum and single-photon states. We show that such a qubit has both macroscopic and microscopic properties. In particular, we investigate a quantum teleportation protocol from a macroscopic object to a microscopic state. The text was submitted by the author in English.  相似文献   

6.
A. P. Saiko  R. Fedaruk 《JETP Letters》2010,91(12):681-685
Multiplication of spin qubits arises at double resonance in a bichromatic field when the frequency of the radio-frequency (rf) field is close to that of the Rabi oscillation in the microwave field, provided its frequency equals the Larmor frequency of the initial qubit. We show that the operational multiphoton transitions of dressed qubits can be selected by the choice of both the rotating frame and the rf phase. In order to enhance the precision of dressed qubit operations in the strong-field regime, the counter-rotating component of the rf field is taken into account.  相似文献   

7.
We have embedded an artificial atom, a superconducting transmon qubit, in an open transmission line and investigated the strong scattering of incident microwave photons (~6 GHz). When an input coherent state, with an average photon number N?1 is on resonance with the artificial atom, we observe extinction of up to 99.6% in the forward propagating field. We use two-tone spectroscopy to study scattering from excited states and we observe electromagnetically induced transparency (EIT). We then use EIT to make a single-photon router, where we can control to what output port an incoming signal is delivered. The maximum on-off ratio is around 99% with a rise and fall time on the order of nanoseconds, consistent with theoretical expectations. The router can easily be extended to have multiple output ports and it can be viewed as a rudimentary quantum node, an important step towards building quantum information networks.  相似文献   

8.
We investigate the entanglement dynamics of a quantum system consisting of three superconducting charge qubits (SCQs) interacting with a microwave field. For separable and entangled states of the SCQs, the evolutions are studied under various photon numbers of cavity field. The results show that the amplitude and period of the bipartite entanglement square concurrences can be controlled by the choice of initial states of SCQs and photon numberof cavity field, respectively. This simple model of a quantum register allows us to understand the dynamic process of the quantum storage of information carried by charge qubit.  相似文献   

9.
We propose a method to prepare multipartite entangled states such as cluster states and graph states based on the cavity input-output process and single photon measurement. Two quantum gates, a controlled phase gate and a fusion gate between two atoms trapped in respective cavities, are proposed to prepare atomic cluster states and graph states with one and two dimensions. We also introduce a scheme that can generate an arbitrary multipartite photon duster state which uses two coherent states as a qubit basis.  相似文献   

10.
Parametric control of a superconducting flux qubit has been achieved by using two-frequency microwave pulses. We have observed Rabi oscillations stemming from parametric transitions between the qubit states when the sum of the two microwave frequencies or the difference between them matches the qubit Larmor frequency. We have also observed multiphoton Rabi oscillations corresponding to one- to four-photon resonances by applying single-frequency microwave pulses. The parametric control demonstrated in this work widens the frequency range of microwaves for controlling the qubit and offers a high quality testing ground for exploring nonlinear quantum phenomena of macroscopically distinct states.  相似文献   

11.
An analysis is presented of the time evolution of an optical field during a quantum nondemolition measurement of photon number using the cross-Kerr interaction between the signal and probe fields. It is shown that the signal field state collapses into a Fock state only asymptotically (in the infinite time limit), remaining in a superposition of two Fock states (Fock-state qubit) throughout most of the measurement period. Estimates are obtained both for the time required to measure photon number to the desired accuracy and for the Fock-state qubit lifetime.  相似文献   

12.
单个中性原子的超精细微波跃迁能级的相干性是基于中性原子量子计算、量子信息处理和量子模拟的基础.我们在实验上利用微波双光子拉曼过程实现了蓝移阱中铯原子基态超精细态|6S1/2,F=3,mF=-1〉和|6S1/2,F=4,mF=1〉间的相干操控,并研究了其相对能级频移随磁场的变化,获得了"魔术"磁场的大小为1.4(2)Gauss(1 Gauss=10-4 T).结果表明,利用魔术磁场可大幅改善超精细态|6S1/2,F=3,mF=-1?和|6S1/2,F=4,mF=1〉之间的相干性,测量到的相干时间可达1.0(1)s.  相似文献   

13.
卢竞  周兰  匡乐满 《中国物理》2006,15(9):1941-1946
In this paper, we present a linear optical scheme for optimal unambiguous discrimination among nonorthogonal quantum states in terms of the multiple-rail and polarization representation of a single photon. In our scheme, discriminated quantum states are expressed by using the spatial degree of freedom of a single photon while the polarization degree of freedom of the single photon is used to act as an auxiliary qubit. The optical components used in our scheme are only passive linear optical elements such as polarizing beam splitters, wave plates, polarizers, single photon detectors, and single photon source.  相似文献   

14.
We continuously measure the state of a superconducting quantum bit coupled to a microwave readout cavity by using a fast, ultralow-noise parametric amplifier. This arrangement allows us to observe quantum jumps between the qubit states in real time, and should enable quantum error correction and feedback--essential components of quantum information processing.  相似文献   

15.
We study the interaction between a single-mode quantized field and a quantum system composed of two qubits. We suppose that two qubits initially be prepared in the mixed and separable state, and study how entanglement between two qubits arises in the course of evolution according to the Jaynes-Cummings type interaction with nonclassical radiation field. We also investigate the relation between entanglement and purity of qubit subsystem. We show that different photon statistics have different effects on the dynamical behavior of the qubit subsystem. When the qubits are initially prepared in the maximally mixed and separable state, for coherent state field we cannot find entanglement between two qubits; for squeezed state field entanglement between two qubits exists in several short period of time; for even and odd coherent state fields of large photon number, the dynamical behavior of the entanglement between two qubits shows collapse and revival phenomenon. For odd coherent state field of small photon number, the entanglement with both qubits initially prepared in maximally mixed state can be stronger than that with both qubits initially prepared in pure states. For fields of small photon number, the entanglement strongly depends on the states they are initially prepared in. For coherent state field, and odd and even coherent state fields of large photon number, the entanglement only depends on the purity of the initial state of qubit subsystem. We also show that during the evolution the unentangled state may be purer than the entangled state, and the maximum degree of entanglement may not occur at the time when the qubit subsystem is in the purist state.  相似文献   

16.
We study the interaction between a single-mode quantized field and a quantum system composed of two qubits. We suppose that two qubits initially be prepared in the mixed and separable state, and study how entanglement between two qubits arises in the course of evolution according to the Jaynes-Cummings type interaction with nonclassical radiation field. We also investigate the relation between entanglement and purity of qubit subsystem. We show that different photon statistics have different effects on the dynamical behavior of the qubit subsystem. When the qubits are initially prepared in the maximally mixed and separable state, for coherent state field we cannot find entanglement between two qubits; for squeezed state field entanglement between two qubits exists in several short period of time; for even and odd coherent state fields of large photon number, the dynamical behavior of the entanglement between two qubits shows collapse and revival phenomenon. For odd coherent state field of small photon number, the entanglement with both qubits initially prepared in maximally mixed state can be stronger than that with both qubits initially prepared in pure states. For fields of small photon number, the entanglement strongly depends on the states they are initially prepared in. For coherent state field, and odd and even coherent state fields of large photon number, the entanglement only depends on the purity of the initial state of qubit subsystem. We also show that during the evolution the unentangled state may be purer than the entangled state, and the maximum degree of entanglement may not occur at the time when the qubit subsystem is in the purist state.  相似文献   

17.
Dressed qubits     
Inherent gate errors can arise in quantum computation when the actual system Hamiltonian or Hilbert space deviates from the desired one. Two important examples we address are spin-coupled quantum dots in the presence of spin-orbit perturbations to the Heisenberg exchange interaction, and off-resonant transitions of a qubit embedded in a multilevel Hilbert space. We propose a "dressed qubit" transformation for dealing with such inherent errors. Unlike quantum error correction, the dressed qubit method does not require additional operations or encoding redundancy, is insensitive to error magnitude, and imposes no new experimental constraints.  相似文献   

18.
19.
本文提出了一种基于线性光学的多通道混合纠缠态方案。最初的混合纠缠态是在连续变量猫态和分离变量单光子量子比特之间产生。该方案基于线性光学元件,利用分束器在初始混合纠缠态基础上产生多通道混合纠缠态(M组)。在此基础上,对每对混合纠缠态相对初始混合纠缠态的保真度进行了计算,并分析了保真度随所分份数多少及猫态大小的变化关系。这种多通道混合纠缠态将会为涉及分离变量与连续变量的多通道量子信息传输及存储、量子网络节点信息分布等提供重要的资源。  相似文献   

20.
Characterization of the multipartite mixed state entanglement is still a challenging problem. This is due to the fact that the entanglement for the mixed states, in general, is defined by a convex-roof extension. That is the entanglement measure of a mixed state ρ of a quantum system can be defined as the minimum average entanglement of an ensemble of pure states. In this paper, we show that polynomial entanglement measures of degree 2 of even-N qubits X states is in the full agreement with the genuine multipartite (GM) concurrence. Then, we plot the hierarchy of entanglement classification for four qubit pure states and then using new invariants, we classify the four qubit pure states. We focus on the convex combination of the classes whose at most the one of the invariants is non-zero and find the relationship between entanglement measures consist of non-zero-invariant, GM concurrence and one-tangle. We show that in many entanglement classes of four qubit states, GM concurrence is equal to the square root of one-tangle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号