首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reger DL  Watson RP  Smith MD 《Inorganic chemistry》2006,45(25):10077-10087
Reactions of the arene-linked bis(pyrazolyl)methane ligands m-bis[bis(1-pyrazolyl)methyl]benzene, (m-[CH(pz)2]2C6H4, Lm), p-bis[bis(1-pyrazolyl)methyl]benzene, (p-[CH(pz)2]2C6H4, Lp), and 1,3,5-tris[bis(1-pyrazolyl)methyl]benzene (1,3,5-[CH(pz)2]3C6H3, L3) with AgX salts (pz = 1-pyrazolyl; X = BF4- or PF6-) yield two types of molecular motifs depending on the arrangement of the ligating sites about the central arene ring. Reactions of the m-phenylene-linked Lm with AgBF4 and AgPF6 afford complexes consisting of discrete, metallacyclic dications: [Ag2(mu-Lm)2](BF4)2 (1) and [Ag2(mu-Lm)2](PF6)2 (2). When the p-phenylene-linked Lp is treated with AgBF4 and AgPF6, acyclic, cationic coordination polymers are obtained: {[Ag(mu-Lp)]BF4}infinity (3) and {[Ag(mu-Lp)]PF6}infinity (4). Reaction of the ligand L3, containing three bis(pyrazolyl)methane units in a meta arrangement, with an equimolar amount of AgBF4 again yields discrete metallacyclic dications in which one bis(pyrazolyl)methane unit on each ligand remains unbound: [Ag2(mu-L3)2](BF4)2 (5). Treatment of L3 with an excess of AgBF4 affords a polymer of metallacycles, {[Ag3(mu-L3)2](BF4)3}infinity (6), with one of the bis(pyrazolyl)methane units on each ligand bound to a silver cation bridging two metallacycles. The supramolecular structures of the silver(I) complexes 1-6 are organized by noncovalent interactions, including weak hydrogen bonding, pi-pi, and anion-pi interactions.  相似文献   

2.
Complexes [PF6 subset(Ag3(titmb)2](PF6)2 (8) and {SbF6 subset[Ag3(titmb)2](SbF6)2}.H2O.1.5 CH3OH (9) are obtained by reaction of titmb and Ag+ salts with different anions (PF6(-) and SbF6(-)), and crystal structures reveal that they are both M3L2 cage complexes with short Ag...F interactions between the silver atoms and the fluorine atoms of the anions. In complex 8, a novel cage dimer is formed by weak Ag...F contacts; an unique cage tetramer formed via Ag...pi interactions (Ag...eta5-imidazole) between dimers and an infinite 1D cage chain is presented. However, each of the external non-disordered SbF6(-) anions connect with six cage 9s via Ag...F contacts, and each cage 9 in turn connects with three SbF6(-) anions to form a 2D network cage layer; and the layers are connected by pi-pi interactions to form a 3D network. The anion-exchange reactions of four Ag3L2 type complexes ([BF4 subset(Ag3(titmb)2](BF4)2 (6), [ClO4 subset(Ag3(titmb)2](ClO4)2 (7b), [PF6 subset(Ag3(titmb)2](PF6)2 (8) and [SbF6 subset(Ag3(titmb)2](SbF6)2.1.5CH3OH (9)) with tetrahedral and octahedral anions (ClO4(-), BF4(-), PF6(-) and SbF6(-)) are also reported. The anion-exchange experiments demonstrate that the anion selective order is SbF6(-) > PF6(-) > BF4(-), ClO4(-), and this anion receptor is preferred to trap octahedral and tetrahedral anions rather than linear or triangle anions; SbF6(-) is the biggest and most preferable one, so far. The dimensions of cage complexes with or without internal anions, anion-exchange reactions, cage assembly and anion inclusions, silver(I) coordination environments, Ag-F and Ag-pi interactions of Ag3L2 complexes 1-9 are discussed.  相似文献   

3.
The reactions of four flexible tetradentate ligands, 1,3-bis(2-pyridylthio)propane (L1), 1,4-bis(2-pyridylthio)butane (L2), 1,5-bis(2-pyridylthio)pentane (L3) and 1,6-bis(2-pyridylthio)hexane (L4) with AgX (X = BF4-, ClO4-, PF6-, or CF3SO3-) lead to the formation of seven new complexes: [AgL1(BF4)]2 (1), [[AgL2](ClO4)]infinity (2), [[AgL2(CH3CN)](PF6)]infinity (3), [[AgL3](BF4)(CHCl3)]2 (4), [[AgL3(CF3SO3)](CH3OH)(0.5)]infinity (5), [[Ag2L4(2)](BF4)2]infinity (6), and [[AgL4](PF6)]infinity (7), which have been characterized by elemental analyses, IR spectroscopy, and X-ray crystallography. Single-crystal X-ray analyses show that complexes 1 and 4 possess dinuclear macrometallacyclic structures, and complexes 2, 3 and 5-7 take chain structures. In all the complexes, the nitrogen atoms of ligands preferentially coordinate to silver atoms to form normal coordination bonds, while the sulfur atoms only show weak interactions with silver atoms and the intermolecular AgS weak contacts connect the low-dimensional complexes into high-dimensional supramolecular networks. Additional weak interactions, such as pi-pi stacking, F...F weak interactions, Ag...O contacts or C-H...O hydrogen bonds, also help to stabilize the crystal structures. It was found that the parity of the -(CH2)n- spacers (n = 3-6) affect the orientation of the two terminal pyridyl rings, thereby significantly influence the framework formations of these complexes. The coordination features of ligands and their conformation changes between free and coordination states have been investigated by DFT calculations.  相似文献   

4.
Lin R  Yip JH 《Inorganic chemistry》2006,45(11):4423-4430
Reactions of 9,10-bis(diphenylphosphino)anthracene (PAnP) and AgX (X = OTf-, ClO4-, PF6-, and BF4-) led to luminescent Ag-PAnP complexes with rich structural diversity. Helical polymers [Ag(mu-PAnP)(CH3CN)X]n (X = OTf-, ClO4-, and PF6-) and discrete binuclear [Ag2(mu-PAnP)2(CH3CN)4](PF6)2, trinuclear [Ag3(mu-PAnP)3 supersetBF4](BF4)2, and tetranuclear [Ag4(mu-PAnP)4 superset(ClO4)2](ClO4)2 metallacycles were isolated from different solvents. The tri- and tetranuclear metallacycles exhibited novel puckered-ring and saddlelike structures. Variable-temperature (VT) 31P{1H}-NMR spectroscopy of the complexes was solvent dependent. The dynamics in CD3CN involve two species, but the exchange processes in CD2Cl2 are more complicated. A ring-opening polymerization was proposed for the exchange mechanism in CD3CN.  相似文献   

5.
The preparation and structures of seven new silver(I) complexes involving the parent tris(pyrazolyl)methane unit, [C(pz)(3)], as the donor set, {[C6H5CH2OCH2C(pz)3]Ag}(BF4), {[C6H5CH2OCH2C(pz)3]2Ag3}(CF3SO3)3, {[HOCH2C(pz)3]Ag}(BF4), {[HOCH2C(pz)3]Ag}(CF3SO3), {[HC(pz)3]2Ag2(CH3CN)}(BF4)2, {[HC(pz)3]Ag}(PF6), and {[HC(pz)3]Ag}(CF3SO3), are reported. This project is based on a retro-design of our multitopic C6H(6-n)[CH2OCH2C(pz)3]n (pz = pyrazolyl ring, n = 2, 3, 4, and 6) family of ligands in such a way that each new ligand has one fewer organizational feature. The kappa2-kappa1 bonding mode of the [C(pz)3] units to two silvers, also observed with the multitopic ligands, is the dominant structural feature in all cases. Changing the counterion has important effects on the local structures and on crystal packing. When these structures are compared to similar ones based on the multitopic C6H(6-n)[CH2OCH2C(pz)3]n ligands, it has been shown that the presence of the rigid parts (central arene core and the [C(pz)3] units) are important in order to observe highly organized supramolecular structures. The presence of the flexible ether linkage is also crucial, allowing all noncovalent forces to manifest themselves in a cumulative and complementary manner.  相似文献   

6.
Reaction of the imidazolium N-heterocyclic carbene precursor containing a methyl-substituted pyridyl functionality [HCH3im(CH3py)]PF6, 1, with Ag2O produces the homoleptic Ag(I) complex, [Ag(CH3im(CH3py))2]PF6, 2. In a simple carbene transfer reaction the analogous Au(I) species, [Au(CH3im(CH3py))2]PF6, 3, is formed by treatment of 2 with Au(tht)Cl in dichloromethane. Both 2 and 3 are structurally similar with nearly linearly coordinated NHC ligands. The methyl group appended to the pyridyl ring inhibits rotation of the pyridyl group at room temperature. Addition of AgBF4 to a hot propionitrile solution of 3 followed by crystallization with diethyl ether yields the one-dimensional coordination polymer, {[AuAg(CH3im(CH3py))2(NCCH2CH3)](BF4)2}n, 4, which contains Au-Ag separations of 2.9845(5) and 2.9641(5) A with intermetallic angles of 167.642(14) degrees and 162.081(9) degrees. This material is intensely luminescent in the solid state and exhibits an emission band at 453 nm (lambdaex=350 nm). Nearly colorless [Pd(CH3im(CH3py))2Cl]PF6, 5, is produced upon treatment of 2 with PdCl2(NCC6H5)2. The Pd(II) center in 5 is coordinated to one NHC ligand in a chelate fashion, while the second NHC is bound solely through the carbon center. The X-ray crystal structures of 1-5 are reported.  相似文献   

7.
A series of primary phosphine homoleptic complexes [ML(4)](n)()(+)X(n)() (1, M = Ni, n = 0; 2, M = Pd, n = 2, X = BF(4); 3, M = Cu, n = 1, X = PF(6); 4, M = Ag, n = 1, X = BF(4); L = PH(2)Mes, Mes = 2,4,6-Me(3)C(6)H(2)] was prepared from mesitylphosphine and Ni(COD)(2), [Pd(NCMe)(4)][BF(4)](2), [Cu(NCMe)(4)]PF(6), and AgBF(4), respectively. Reactions of 1-4 with MeC(CH(2)PPh(2))(3) (triphos) or [P(CH(2)CH(2)PPh(2))(3)] (tetraphos) afforded the derivatives [M(L')L](n)()(+)X(n)() (L' = triphos; 6, M = Ni, n = 0; 7, M = Cu, n = 1, X = PF(6); 8, M = Ag, n = 1, X = BF(4); L' = tetraphos; 9, M = Pd, n = 2, X = BF(4)). Addition of NOBF(4) to 1 yielded the nitrosyl compound [NiL(3)(NO)]BF(4), 5. The solution structure and dynamics of 1-9 were studied by (31)P NMR spectroscopy (including the first reported analyses of a 12-spin system for 1-2). Complexes 1, 3, 6, and 7.solvent were characterized crystallographically. The structural and spectroscopic studies suggest that the coordination properties of L are dominated by its relatively small cone angle and that the basicity of L is comparable to that of more commonly used tertiary phosphines.  相似文献   

8.
Wang Y  Yi L  Yang X  Ding B  Cheng P  Liao DZ  Yan SP 《Inorganic chemistry》2006,45(15):5822-5829
The self-assembly of Ag(I) ions with 3,5-dimethyl-4-amino-1,2,4-triazole (L1) and 4-salicylideneamino-1,2,4-triazole (L2) gave two novel complexes, [Ag4(mu2-L1)6][Ag4(mu2-L1)6(CH3CN)2](ClO4)8.2H2O (1) and [Ag4(mu2-L2)6(CH3CN)2](AsF6)4.2H2O (2), both of which contain tetranuclearic clusters constructed via Ag(I) ions and six N1,N2-bridged triazoles with a Ag4N12 core. When 4-(6-amino-2-pyridyl)-1,2,4-triazole (L3) was employed, {[Ag4(mu2-L3)4(mu3-L3)2](CF3SO3)4.H2O}n (3), {[Ag4(mu2-L3)4(mu3-L3)2](ClO4)4}n (4), and {[Ag4(mu2-L3)2(mu3-L3)4](PF6)4.CH3CN.0.75H2O}n (5) were isolated. 3 and 4 are 1D polymers, while 5 is a 2D polymer. 1D and 2D coordination polymers are constructed via the self-assembly of Ag4N12 cores as secondary building units (SBUs). The connection of these SBUs can be represented as a ladderlike structure for 1D polymers and a 4.8(2) net for 2D polymers. Electrospray ionization mass spectrometry measurements and NMR (1H and 13C) studies demonstrate that the tetranuclear SBU retains its integrity and the coordination polymers decompose into the tetranuclear Ag4N12 core in solution. 2 exhibits blue emission in the solid state and green emission in solution at ambient temperature. Strong blue fluorescence for complexes 3-5 in the solid state can be assigned to the intraligand fluorescent emission.  相似文献   

9.
New coordination polymers have been obtained by the self-assembly of silver salts AgX (X = BF 4, PF 6, CF 3SO 3) and 2,4-diamino-6-R-1,3,5-triazines L (R = phenyl and p-tolyl) of formulas AgLX ( 1- 6). A complex of different stoichiometry, [Ag 3L 2(H 2O)(acetone) 2](BF 4) 3, 7 (R = phenyl), has also been synthesized. The three-dimensional structures of five compounds have been determined by X-ray diffraction studies. For the AgLX complexes, when X = BF 4 and R = phenyl or p-tolyl, chiral chains with alternating Ag and L are formed. The chains are cross-linked by the counteranions in a three-dimensional fashion through hydrogen bonds and weak Ag...F interactions giving rise to a structure with solvent-filled channels. Different and more compact structures have been found when the counteranion is CF 3SO 3 (OTf). When R = phenyl, sheets are formed which consist of [Ag 2(OTf) 2L 2] units with double triflate bridges and which contain columns of pi-pi stacked arenes. Hydrogen bonds connect the sheets. When AgOTf is used and R is p-tolyl, a different and unusual ladderlike structure is obtained in which the rungs are double asymmetric bridges consisting of the triflate groups bonded to Ag in kappa (2) O,mu 2- O and kappa (1) O,mu 2- O fashion. The ladders are parallel to each other and are mutually linked by N-H...N hydrogen bonds to give a 3D architecture. A very similar ladderlike structure has been found for 7 but with a water molecule and a BF 4 (-) group acting as bridges. The role played by the hydrogen bonds in complex 6 to form the 3-D structure is played in 7 by [Ag(acetone) 2] fragments. The noncovalent interactions play an important role in the different solid-state 3D structures. The behavior of the new derivatives in solution has also been analyzed. A new species has been detected at low temperatures, and this exhibits restricted rotation of the phenyl ring.  相似文献   

10.
The mononuclear complexes [Ag(H2L1)(Py)2](NO3) x H2O (1, H2L1 = 2,6-bis(5-methyl-1H-pyrazol-3-yl)pyridine) and [Ag(NO3)(L()] (2, L2 = 2,6-bis(5-methyl-1-isopropyl-1H-pyrazol-3-yl)pyridine), dinuclear complex [Ag2(H2L3)2(HL4)2] (3, H2L3 = 2,6-bis(5-phenyl-1H-pyrazol-3-yl)pyridine, HL4 = 6-(5-phenyl-1H-pyrazolyl-3-yl)picolinate), one-dimensional polymer {[Ag2(H2L1)2](NO3)2 x H2O}(n) (4), and hexanuclear clusters [Ag6(HL1)4](X)2 (X = NO3-, 5 ; BF4-, 6 ; ClO4-, 7) stabilized by pincer-like bispyrazolyl ligands have been prepared and characterized using (1)H NMR spectroscopy, elemental analysis, IR spectroscopy, luminescence spectroscopy and X-ray diffraction. In complex , there is a ligand unsupported Ag-Ag bond between the two silver atoms. Complex displays a one-dimensional polymer consisting of an infinite Ag-Ag chain and every two adjacent silver ions are bridged by an H2L1 ligand. Complexes and have the same Ag6 cores in which six silver atoms are held together by four HL1 and five Ag-Ag bonds, while complex was held together by six Ag-Ag bonds. The silver-silver distances in these complexes are found in the range of 2.874(1)-3.333(2) A for ligand supported, and 3.040(1) A for ligand unsupported Ag-Ag bonds, respectively. Complexes 3-7 are strongly luminescent due to either intraligand or metal-ligand charge transfer processes.  相似文献   

11.
设计合成了同时含有丙腈基和咪唑基的新型三脚架配体N,N-二(3-丙腈基)-[3-(1-咪唑基)]正丙胺(L),并与银盐按1:1和2:1的比例反应分别得到了配合物{[AgL]X}n (X = BF4-,1a;X = ClO4-,1b)和{[Ag(L)2]ClO4}n(2),并用X-射线单晶结构分析和电喷雾质谱等方法对其进行了表征。结构分析结果表明,配合物1a和1b为一维链状结构,而配合物2则为单核结构。表明金属盐和配体的比例对配合物结构有很大影响。  相似文献   

12.
The new ligand 2-pyridinyl-3-pyridinylmethanone (L) proves to be an excellent building block for the construction of single-strand helical architectures. A series of helical complexes have been synthesized by the reaction of L with various metal salts, in which L exhibits three kinds of coordination modes involving two kinds of bridging conformations, resulting in four types of single-strand helical chains. The counter anions in the series of 2(1) helical silver(I) complexes {[Ag(L)]X}(infinity)(X = NO(3), 1; PF(6), 2; BF(4), 3; ClO(4), 4; CF(3)CO(2), 5; CF(3)SO(3), 6) are fully or partially embedded inside the cylindrical helix, and the pitch length corresponds not only to the size of the anion but also to its manner of docking into the groove of the helix. Formation of the helical structure in {[Cu(L)(CH(3)CN)(H(2)O)(ClO(4))]ClO(4)}(infinity)(7) is driven by Ow-H...O (perchlorate) hydrogen bonding that leads to a stable triangular motif which rigidly fixes the configuration of the helix. In {[Co(L)(H(2)O)(3)](ClO(4))(2).2H(2)O}(infinity)(8) and {[Zn(L)(H(2)O)(3)](CF(3)SO(3))(2).H(2)O}(infinity)(9), similar helical chains without anion embedment suggest that the pitch length can be tuned by the size of metal cations. Notably, complex {[Ag(L)]CF(3)SO(3)}(infinity)(10), a conformational polymorph of , has a 4(1) helix induced by argentophilic interaction.  相似文献   

13.
The effect of a counteranion on chiral recognition inducing conglomerate crystallization of a cobalt(III) complex is reported. An achiral tripodal ligand involving three imidazole groups, tris{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H3L), was prepared by condensation of tris(2-aminoethyl)amine and 4-formylimidazole in a 1:3 mole ratio. The reaction of H3L and trans-[CoIIICl2(py)4]+ afforded the chiral (Delta or Lambda) [CoIII(H3L)]3+ complex. The formally hemideprotonated complexes [CoIII(H(1.5)L)]X(1.5).nH2O (where X = Cl, Br, I, BF4, ClO4, or PF6) were synthesized by controlled deprotonation of the uncoordinated imidazole NH groups of [Co(H3L)]3+. In crystals of the hemideprotonated complex, two components, [Co(H3L)]3+ and [Co(L)], with the same absolute configuration are linked by imidazole-imidazolate hydrogen bonds to form an extended homochiral 2D sheet structure, which is composed of a hexanuclear unit with a trigonal void. There are two ways of stacking the sheets: One is via homochiral stacking, and the other is via heterochiral stacking. When the size of the counterion is small (i.e., X = Cl, Br, I, or BF4), adjacent homochiral sheets with the same chirality are stacked to form a homochiral crystal (conglomerate). With large anions (i.e., ClO4- and PF6-), a homochiral sheet consisting of Delta enantiomers and a sheet consisting of Lambda enantiomers are stacked alternately to give a heterochiral crystal (a racemic crystal). Optically active Lambda-[Co(H(1.5)L)](ClO4)(1.5).H2O was synthesized from Lambda-[Co(H3L)]3+, and the crystal structure was compared to that of the racemic complex. There are two conflicting factors governing the crystal structure: the skeletal density; the size of the channels. The 2D sheets are more closely packed in the homochiral crystal than in the heterochiral crystal. However, the channels, where the counterions are accommodated, are smaller in the homochiral crystal, and the steric congestion between the anions increases with increasing anion size. The heterochiral crystal has a flexible, zigzag channel structure, and the size of the channels can increase to accommodate larger anions. Thus, complexes with large anions (i.e., ClO4- and PF6-) preferentially form heterochiral crystals rather than homochiral crystals.  相似文献   

14.
The crystal structures of thirteen AgI coordination polymers involving py-CONH-(CH2)n-py (py=pyridine; n=0, 1) derivatives were determined by means of single-crystal X-ray analyses. All of the compounds form one-dimensional chains composed of AgI atoms and bridging ligands with formulas [[Ag(py-CONH-(CH2)n-py)][X]]n (X=PF6 -, ClO4 -, BF4 -, and NO3 - with solvent molecules). The unsymmetrical coordination environments around AgI atoms induce direction in the chains, that is, -[NH-(CH2)n-py-Ag-py-CO]-, which resembles the alignment of amino acid chains in proteins. In compounds [[Ag(4-pia)][X]]n (1 supersetX; 4-pia=N-(4-pyridyl)isonicotinamide; X=PF6 -, ClO4 -, BF4 -, and NO3 -), [[Ag(4-pmia)][X]]n (2 supersetX; 4-pmia=N-(pyridin-4-ylmethyl)isonicotinamide; X=PF6 -, ClO4 -H2O, and NO3 -H2O), and [[Ag(3-pmia)][X]]n (3 supersetX; 3-pmia=N-(pyridin-3-ylmethyl)isonicotinamide; X=PF6 -, ClO4 -, BF4 -, and NO3 -H2O), each chain is aligned parallel to neighboring chains, but adjacent chains run in the opposite direction. Particularly in [[Ag(3-pmia)][PF6]]n (3 supersetPF6 -), [[Ag(3-pmia)][ClO4]]n (3 supersetClO4 -), and [[Ag(3-pmia)][BF4]]n (3 supersetBF4 -), amide moieties of 3-pmia ligands are complementarily hydrogen bonded to amide moieties in neighboring chains, as in the beta-sheet motif in proteins. On the other hand, in [[Ag(4-pmna)][PF6]MeOH]n (4-pmna=N-(pyridin-4-ylmethyl)nicotinamide), all chains in the crystal form left-handed (4 a supersetPF6 -MeOH) and right-handed (4 b supersetPF6 -MeOH) helical structures with a helical pitch of 28 A. Heterogeneous anion exchanges proceed reversibly in 2, but not in 3, which provides information about the thermal stabilities of the crystals.  相似文献   

15.
The first 5-substituted trihydro(azolyl)borate system, the sodium trihydro(5-CF3-pyrazol-1-yl)borate, Na[H3B(5-(CF3)pz)], has been synthesized by the reaction of 3-trifuoromethyl-pyrazole with NaBH4 in high yield. Na[H3B(5-(CF3)pz)] reacts with AgNO3 in the presence of monodentate tertiary phosphanes PR3 (PR3=P(C6H5)3, P(p-C6H4CH3)3, P(m-C6H4CH3)3, P(o-C6H4CH3)3, or PCH3(C6H5)2) to afford silver(I) bis(phosphane) adducts. These compounds have been characterized by elemental analyses, FTIR, ESI-MS, and multinuclear (1H, 19F, and 31P) NMR spectroscopy. Solid-state structures of {[H3B(5-(CF3)pz)]Ag[P(C6H5)3]2} and {[H3B(5-(CF3)pz)]Ag[P(p-C6H4CH3)3]2} are also reported. They feature kappa2-N,H-bonded trihydro(pyrazolyl)borate ligands and pseudo-tetrahedral silver atoms.  相似文献   

16.
The thiophene-based bis(N-methylamido-pyridine) ligand SC4H2-2,5-{C(=O)N(Me)-4-C5H4N}2 reacts with silver(I) salts AgX to give 1 : 1 complexes, which are characterized in the solid state as the macrocyclic complexes [Ag(2){SC4H2-2,5-(CONMe-4-C5H4N)2}2][X]2, which have the cis conformation of the C(=O)N(Me) group, when X = CF3CO2, NO3, or CF3SO3 but as the polymeric complex [Ag(n){SC4H2-2,5-(CONMe-4-C5H4N)2}n][X]n, with the unusual trans conformation of the C(=O)N(Me) group, when X = PF6. The bis(amido-pyridine) ligand SC4H2-2,5-{C(=O)NHCH2-3-C5H4N}2 reacts with silver(I) trifluoroacetate to give the polymeric complex [Ag(n){SC4H2-2,5-(CONHCH2-3-C5H4N)2}n][X]n, X = CF3CO2. The macrocyclic complexes contain transannular argentophilic secondary bonds. The polymers self assemble into sheet structures through interchain C=O...Ag and S...Ag bonds in [Ag(n){SC4H2-2,5-(CONMe-4-C5H4N)2}n][PF6]n and through Ag...Ag, C=O...Ag and Ag...O(trifluoroacetate)...HN secondary bonds in [Ag(n){SC4H2-2,5-(CONHCH2-3-C5H4N)2}n][CF3CO2]n.  相似文献   

17.
The bitopic ligand p-C(6)H(4)[CH(2)OCH(2)C(pz)(3)](2) (pz = pyrazolyl ring) that contains two tris(pyrazolyl)methane units connected by a semirigid organic spacer reacts with silver(I) salts to yield [p-C(6)H(4)[CH(2)OCH(2)C(pz)(3)](2)(AgX)(2)]( infinity ), where X = CF(3)SO(3)(-) (1), SbF(6)(-) (2), PF(6)(-) (3), BF(4)(-) (4), and NO(3)(-) (5). Crystallization of the first three compounds from acetone yields [p-C(6)H(4)[CH(2)OCH(2)C(pz)(3)](2)(AgCF(3)SO(3))(2)]( infinity ) (1a), [p-C(6)H(4)[CH(2)OCH(2)C(pz)(3)](2)(AgSbF(6))(2)[(CH(3))(2)CO](2)]( infinity ) (2b), and [p-C(6)H(4)[CH(2)OCH(2)C(pz)(3)](2)AgPF(6)]( infinity ) (3a), where the stoichiometry for the latter compound has changed from a metal:ligand ratio of 2:1 to 1:1. The structure of 1a is based on helical argentachains constructed by a kappa(2)-kappa(1) coordination to silver of the tris(pyrazolyl)methane units. These chains are organized into a tubular 3D structure by cylindrical [(CF(3)SO(3))(6)](6)(-) clusters that form weak C-H...O hydrogen bonds with the bitopic ligand. The same kappa(2)-kappa(1) coordination is present in the structure of 2a, but the structure is organized by six different tris(pyrazolyl)methane units from six ligands bonding with six silvers to form a 36-member argentamacrocycle core. The cores are organized in a tubular array by the organic spacers where each pair of macrocycles sandwich six acetone molecules and one SbF(6)(-) counterion. The structure of 3a is based on a kappa(2)-kappa(0) coordination mode of each tris(pyrazolyl)methane unit forming a helical coordination polymer, with two strands organized in a double stranded helical structure by a series of C-H...pi interactions between the central arene rings. Crystallization of 2-4 from acetonitrile yields complexes of the formula [p-C(6)H(4)[CH(2)OCH(2)C(pz)(3)](2)[(AgX)(2)(CH(3)CN)(n)]]( infinity ) where n = 2 for X = SbF(6)(-) (2b), X = PF(6)(-) (3b) and n = 1 for X = BF(4)(-) (4b). All three structures contain argentachains formed by a kappa(2)-kappa(1) coordination mode of the tris(pyrazolyl)methane units linked by the organic spacer and arranged in a 2D sheet structure with the anions sandwiched between the sheets. Crystallization of 5 from acetonitrile yields crystals of the formula [p-C(6)H(4)[CH(2)OCH(2)C(pz)(3)](2)(AgNO(3))(2)(CH(3)CN)(4)]( infinity ), where the nitrate is bonded to the silver. The argentachains, again formed by kappa(2)-kappa(1) coordination, are arranged in W-shaped sheets that have an overall configuration very different from 2b-4b. Treating [p-C(6)H(4)[CH(2)OCH(2)C(pz)(3)](2)(AgSbF(6))(2)]( infinity ) with a saturated aqueous solution of KPF(6) or KO(3)SCF(3) slowly leads to complete exchange of the anion. Crystallization of a sample that contains an approximately equal mixture of SbF(6)(-)/PF(6)(-) from acetonitrile yields [p-C(6)H(4)[CH(2)OCH(2)C(pz)(3)](2)[Ag(2)(PF(6))(0.78(1))(SbF(6))(1.22(1))(CH(3)CN)(2)][(CH(3)CN)(0.25) (C(4)H(10)O)(0.25)]]( infinity ), a compound with a sheet structure analogous to 2b-4b. Crystallization of the same mixture from acetone yields [p-C(6)H(4)[CH(2)OCH(2)C(pz)(3)](2)(AgSbF(6))[(CH(3))(2)CO](1.5)]( infinity ), where the metal-to-ligand ratio is 1:1 and the [C(pz)(3)] units are kappa(2)-kappa(0) bonded forming a coordination polymer. The supramolecular structures of all species are organized by a combination of C-H...pi, pi-pi, or weak C-H-F(O) hydrogen bonding interactions.  相似文献   

18.
The semi-rigid ligand 1,4-bis((3,5-dimethylisoxazol-4-yl)methyl)benzene (bisox) reacts with a range of silver(i) salts to give products in which the anions dictate the structure. The reactions with AgNO(3) and AgO(2)CCF(3) both lead to compounds in which the anions are coordinated to the silver centres. Thus, the structure of [Ag(2)(NO(3))(2)(bisox)] 1 contains helical silver-nitrate chains that are linked into sheets by bridging bisox ligands, whereas the structures of [Ag(O(2)CCF(3))(bisox)]·0.5X (2a, X = MeOH; 2b, X = MeCN) consist of sheets in which Ag(2)(μ-O(2)CCF(3))(2) dimers act as 4-connecting nodes. In these structures bisox adopts the S-conformation, with the nitrogen donor atoms anti to each other. The reactions of bisox with AgClO(4) and AgBF(4) in methanol give the compounds [Ag(2)(bisox)(3)]X(2) (3, X = ClO(4); 5, X = BF(4)), the structures of which contain triply-interpenetrated sheets with Borromean links and ligands in the S-conformation. Recrystallisation of these compounds from acetonitrile-diethyl ether gives [Ag(2)(bisox)(3)]X(2)·xEt(2)O (4, X = ClO(4), x = 1; 6, X = BF(4), x = 1.2). The structures of 4 and 6 contain similar triply-interpenetrated sheets to those in 3 and 5, though these are sandwiched between sheets of discrete Ag(2)(bisox)(3) cages, in which the bisox ligands are in the C-conformation, with the nitrogen donor atoms syn to each other. Diethyl ether molecules project through the faces of the cages and template cage formation. Both 4 and 6 lose diethyl ether on heating in vacuum, and convert into 3 and 5, respectively. This solid state transformation requires a change in conformation of half the bisox ligands, with conversion of 6 into 5 occurring more readily than conversion of 4 into 3. The reactions of bisox with AgPF(6) and AgSbF(6) in methanol give mixtures of products from which [Ag(bisox)(2)]X·0.5bisox (7, X = PF(6); 8, X = SbF(6)) can be isolated. Both 7 and 8 have structures containing one-dimensional chains, in which the bisox ligands adopt C-conformations and interconnect distorted tetrahedral silver centres in a pairwise manner generating macrocycles. Additional uncoordinated bisox molecules lie within half of these macrocyclic rings. Recrystallisation of the crude AgSbF(6)/bisox reaction mixture from acetonitrile-diethyl ether gives [Ag(bisox)(2)]SbF(6)9, the structure of which consists of a triply-interpenetrated flattened diamondoid network. A similar structure was observed for [Ag(bisox)(2)]CF(3)SO(3)10, which is formed from the reaction of AgO(3)SCF(3) and bisox in methanol.  相似文献   

19.
Reaction of complex [Cp2Mo2(CO)4(micro,eta 2-P2)] (Cp=C5H5 (1)) with CuPF6, AgX (X=BF4, ClO4, PF6, SbF6, Al{OC(CF3)3}4) and [(Ph3P)Au(THF)][PF6] (THF=tetrahydrofuran), respectively, results in the facile formation of the dimers 3 b-h of the general formula [M2({Cp2Mo2 (CO)4(micro,eta 2:eta 2-P2)}2)({Cp2Mo2(CO)4 (micro,eta 2:eta 1:eta 1-P2)}2)][X]2 (M=Cu, Ag, Au; X=BF4, ClO4, PF6, SbF6, Al{OC(CF3)3}4). As revealed by X-ray crystallography, all these dimers comprise dicationic moieties that are well-separated from the weakly coordinating anions in the solid state. If 1 is allowed to react with AgNO2 and LAuCl (L=CO or tetrahydrothiophene), respectively, the dimer [Ag2{Cp2Mo2 (CO)4(micro,eta 2:eta 1:eta 1-P2)}2(eta 2-NO2)2] (5) and the complex [AuCl{Cp2Mo2(CO)4(micro,eta 2:eta 1-P2)}] (6) are formed, which have also been characterised by X-ray crystallography. In compounds 5 and 6, the anions remain coordinated to the Group 11 metal centres. Spectroscopic data suggest that the dimers 3 b-h display dynamic behaviour in solution and this is discussed by using the comprehensive results obtained for 3 g (M=Ag; X=Al{OC(CF3)3}4) as a basis. The interpretation of the experimental results is facilitated by density functional theory (DFT) calculations on 3 g (structures, energetics, NMR shielding tensors). The 31P magic angle spinning (MAS) NMR spectra recorded for the dimers 3 b (M=Cu; X=PF6) and 3c (M=Ag; X=BF4) as well as that of the previously reported one-dimensional (1 D) polymer [Ag2{Cp2Mo2(CO)4(micro,eta 2:eta 1:eta 1-P2)}3(micro,eta 1:eta 1-NO3)]n[NO3]n (4) are also discussed herein and the strong dependence of the chemical shift of the phosphorus atoms within each compound on subtle structural differences in the solid state is demonstrated. Furthermore, the X-ray crystallographic and 31P MAS NMR spectroscopic characterisation of a new polymorph of 1 is reported.  相似文献   

20.
The cationic complex {[Ru]=C=CHCPh2CH2CH=CH2}BF4 (3a, [Ru] = (eta5-C5H5)(PPh3)2Ru) in solution transforms to {[Ru]=C=CHCH2CPh2CH=CH2}BF4 (4a) via a new metathesis process of the terminal vinyl group with the C=C of the vinylidene group which is confirmed by 13C labeling studies. This transformation is irreversible as revealed by deuteration and decomplexation studies. The cationic complex {[Ru]=C=CHCPh2CH2CMe=CH2}BF4 (3b) undergoes a cyclization process yielding 6b containing a eta2-cyclic allene ligand which is fully characterized by single-crystal X-ray diffraction analysis. Analogous complexes 4a' and 6b' ([Ru] = (eta5-C5H5)(dppe)Ru) containing dppe ligands were similarly obtained from protonation of the corresponding acetylide complexes via formation of vinylidene intermediate. Protonation of the acetylide complex containing a terminal alkynyl group [Ru]-CCCPh2CH2CCH (2c) generates the vinylidene complex {[Ru]=C=CHCPh2CH2CCH}BF4 (3c) which again undergoes an irreversible transformation to give {[Ru]=C=CHCH2CPh2CCH}BF4 (4c) possibly via a pi-coordinated alkynyl complex followed by hydrogen and metal migration. No similar transformation is observed for the analogous dppe complex 3c'. With an extra methylene group, complex {[Ru]=C=CHCPh2CH2CH2CH=CH2}BF4 (3d) and complex {[Ru]=C=CHCPh2CH2Ph}BF4 (3e) are stable. The presence of a gem-diphenylmethylene moiety at the vinylidene ligand with the appropriate terminal vinyl or alkynyl group along with the correct steric environment implements such a novel reactivity in the ruthenium vinylidene complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号