首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the nonradiative deactivation process of malachite green in the singlet excited states, S(1) and S(2), by high-level ab initio quantum chemical calculations using the CASPT2//CASCF approach. The deactivation pathways connecting the Franck-Condon region and conical intersection regions are identified. The initial population in the S(1) state is on a flat surface and the relaxation involves a rotation of phenyl rings, which leads the molecule to reach the conical intersection between the S(1) and S(0) states, where it efficiently decays back to the ground state. There exists a small barrier connecting the Franck-Condon and conical intersection regions on the S(1) potential energy surface. The decay mechanism from the S(2) state also involves the twisting motion of phenyl rings. In contrast to the excitation to the S(1) state, the initial population is on a downhill ramp potential and the barrierless relaxation through the rotation of substituted phenyl rings is expected. During the course of relaxation, the molecule switches to the S(1) state at the conical intersection between S(2) and S(1), and then it decays back to the ground state through the intersection between S(1) and S(0). In relaxation from both S(1) and S(2), large distortion of phenyl rings is required for the ultrafast nonradiative decay to the ground state.  相似文献   

2.
Ultrafast processes in photoexcited N-salicylideneaniline have been investigated with femtosecond time-resolved resonance-enhanced multiphoton ionization spectroscopy. The ion signals via the S(1)(n,pi( *)) state of the enol form as well as the proton-transferred cis-keto form emerge within a few hundred femtoseconds after photoexcitation to the first S(1)(pi,pi( *)) state of the enol form. This reveals that two ultrafast processes, excited-state intramolecular proton transfer (ESIPT) reaction and an internal conversion (IC) to the S(1)(n,pi( *)) state, occur on a time scale less than a few hundred femtoseconds from the S(1)(pi,pi( *)) state of the enol form. The rise time of the transient corresponding to the production of the proton-transferred cis-keto form is within 750 fs when near the red edge of the absorption is excited, indicating that the ESIPT reaction occurs within 750 fs. The decay time of the S(1)(pi,pi( *)) state of the cis-keto form is 8.9 ps by exciting the enol form at 370 nm, but it dramatically decreases to be 1.5-1.6 ps for the excitation at 365-320 nm. The decrease in the decay time has been attributed to the opening of an efficient nonradiative channel; an IC from S(1)(pi,pi( *)) to S(1)(n,pi( *)) of the cis-keto form promotes the production of the trans-keto form as the final photochromic products. The two IC processes may provide opposite effect on the quantum yield of photochromic products: IC in the enol form may substantially reduce the quantum yield, but IC in the cis-keto form increase it.  相似文献   

3.
A computational model of nonradiative decay is developed and applied to explain the time-dependent emission spectrum of thioflavin T (ThT). The computational model is based on a previous model developed by Glasbeek and co-workers (van der Meer, M. J.; Zhang, H.; Glasbeek, M. J. Chem. Phys. 2000, 112, 2878) for auramine O, a molecule that, like ThT, exhibits a high nonradiative rate. The nonradiative rates of both auramine O and ThT are inversely proportional to the solvent viscosity. The Glasbeek model assumes that the excited state consists of an adiabatic potential surface constructed by adiabatic coupling of emissive and dark states. For ThT, the twist angle between the benzothiazole and the aniline is responsible for the extensive mixing of the two excited states. At a twist angle of 90°, the S(1) state assumes a charge-transfer-state character with very small oscillator strength, which causes the emission intensity to be very small as well. In the ground state, the twist angle of ThT is rather small. The photoexcitation leads first to a strongly emissive state (small twist angle). As time progresses, the twist angle increases and the oscillator strength decreases. The fit of the experimental results by the model calculations is good for times longer than 3 ps. When a two-coordinate model is invoked or a solvation spectral-shift component is added, the fit to the experimental results is good at all times.  相似文献   

4.
The reaction dynamics of excited electronic states in nucleic acid bases is a key process in DNA photodamage. Recent ultrafast spectroscopy experiments have shown multicomponent decays of excited uracil and thymine, tentatively assigned to nonadiabatic transitions involving multiple electronic states. Using both quantum chemistry and first principles quantum molecular dynamics methods we show that a true minimum on the bright S2 electronic state is responsible for the first step that occurs on a femtosecond time scale. Thus the observed femtosecond decay does not correspond to surface crossing as previously thought. We suggest that subsequent barrier crossing to the minimal energy S2/S1 conical intersection is responsible for the picosecond decay.  相似文献   

5.
Recent experimental work carried out in this laboratory on the ultrafast dynamics of myoglobin (Mb) is summarized with a stress on structural and vibrational energy relaxation. Studies on the structural relaxation of Mb following CO photolysis revealed that the structural change of heme itself, caused by CO photodissociation, is completed within the instrumental response time of the time-resolved resonance Raman apparatus used (approximately 2 ps). In contrast, changes in the intensity and frequency of the iron-histidine (Fe-His) stretching mode upon dissociation of the trans ligand were found to occur in the picosecond regime. The Fe-His band is absent for the CO-bound form, and its appearance upon photodissociation was not instantaneous, in contrast with that observed in the vibrational modes of heme, suggesting appreciable time evolution of the Fe displacement from the heme plane. The band position of the Fe-His stretching mode changed with a time constant of about 100 ps, indicating that tertiary structural changes of the protein occurred in a 100-ps range. Temporal changes of the anti-Stokes Raman intensity of the v4 and v7 bands demonstrated immediate generation of vibrationally excited heme upon the photodissociation and decay of the excited populations, whose time constants were 1.1 +/- 0.6 and 1.9 +/- 0.6 ps, respectively. In addition, the development of the time-resolved resonance Raman apparatus and prospects in this research field are described.  相似文献   

6.
As a continuation of the preceding paper in this issue (J. Phys. Chem. A 2005, 109, 6805), we studied photodissociation dynamics of the acetone S2 (n, 3s) Rydberg state excited at 195 nm using femtosecond time-resolved photofragment translational spectroscopy. The technique, which is implemented by the combination of fs pump-probe ionization spectroscopy and kinetic energy resolved time-of-flight mass spectrometry (KETOF), measured temporal evolutions of the product kinetic energy distributions (KEDs) with a time resolution limited only by the laser pulse widths. Two methyl product KED components were resolved and assigned to the primary and secondary methyl products on the basis of their temporal behaviors. The results support the mechanism in which the primary dissociation occurs on the acetone S1 surface and provide complementary dynamical information to that discussed in the preceding paper.  相似文献   

7.
Ultrafast carrier dynamics in individual semiconducting single-walled carbon nanotubes was studied by femtosecond transient absorption and fluorescence measurements. After photoexcitation of the second van Hove singularity of a specific tube structure, the relaxation of electrons and holes to the fundamental band edge occurs to within 100 fs. The fluorescence decay from this band is dependent on the excitation density and can be rationalized by exciton annihilation theory. In contrast to fluorescence, the transient absorption has a distinctly different time and intensity dependence for different tube structures, suggesting a branching to emissive and trap states following photoexcitation.  相似文献   

8.
Ammonia dimers and trimers are studied in a femtosecond pump probe experiment. The pump laser (6.2 eV) excites the cluster into the à state which is ionized either by 4.6 eV or by 3.1 eV probe photons. Characteristic differences are explained in terms of a kinetic model involving an internal protonated neutral excited state as an intermediate.  相似文献   

9.
10.
Relaxation dynamics of the excited state of bis-[4-(dimethylamino)-phenyl] methaniminium chloride (Auramine) has been investigated using subpicosecond time-resolved absorption spectroscopic technique in both aprotic and alcoholic solvents. The locally excited (LE) state, formed following photoexcitation of Auramine using 400 nm light, undergoes intramolecular charge transfer (ICT) process, which is accompanied by the twisting of the dimethylanilino groups. Time evolution of the transient absorption-stimulated emission spectra as well as the wavelength dependence of the temporal dynamics investigated in each kind of solvents suggest that the relaxation process proceeds via the formation of at least two transient states (TS I and TS II), which are geometrical conformers and consecutively formed following the decay of the LE state. Twisting of the dimethylaniline groups are nearly barrierless processes, the rates of which show linear correlation both with the macroscopic or shear viscosities as well as the solvation times of the solvents. Time-dependent and fractional viscosity dependence of the relaxation rates of the LE and the TS I states in aprotic solvents suggest the multidimensionality of the reaction coordinate as well as reveal the viscoelastic property of the solvents. However, in normal alcohols, in addition to these two factors, activation energy of the solvent viscosity may be another important factor for the slower twisting dynamics of Auramine in alcohols. To explain the viscosity dependence of the decay time of the TS II state, which undergoes an efficient internal conversion process to the ground state, the possibility of occurrence of different mechanisms, such as, energy gap law, involvement of intramolecular high frequency modes, as well as the phenyl group twisting motion on a potential energy surface having a photochemical funnel, have been discussed. TDDFT method has been applied to obtain the optimized electronic structures of the transient states but it has been possible to obtain only that for the TS II state.  相似文献   

11.
Time-resolved photoelectron imaging of the 7,7,8,8-tetracyanoquinodimethane (TCNQ) radical anion is presented. Photoelectron angular distributions (PADs) are qualitatively analyzed in terms of the simple s-p model that is based on symmetry arguments. The internal conversion dynamics from the first excited state (1(2)B(3u)) to the ground state ((2)B(2g)) may be observed through temporal changes in the PADs of the spectrally overlapping photoelectron features arising from photodetachment of the ground state and the excited state. A formulism for extracting the population dynamics from the β(2) anisotropy parameter of overlapping spectroscopic features is presented. This is used to extract the lifetime of the first excited state, which is in good agreement with that observed in the time-resolved photoelectron spectra.  相似文献   

12.
Ultrafast dissociation dynamics in OClO molecules is studied, induced by femtosecond laser pulses in the wavelength region from 386 to 409 nm, i.e., within the wide absorption band to the (approximately)A (2)A(2) electronic state. The decay of the initially excited state due to nonadiabatic coupling to the close lying (2)A(1) and (2)B(2) electronic states proceeds with a time constant increasing from 4.6 ps at 386 nm to 30 ps at 408.5 nm. Dissociation of the OClO molecule occurs after internal conversion within about 250 fs. In addition, a minor channel of direct excitation of the (2)A(1) electronic state has been identified, the lifetime of which increases from a few 100 fs at 386 nm to 2.2 ps at 408.5 nm. Simultaneous excitation of two neighboring vibrational bands in the (approximately)A (2)A(2) state leads to a coherent oscillation of the parent ion signal with the frequency difference of both modes.  相似文献   

13.
A hybrid of a time-of-flight mass spectrometer and a time-of-flight "magnetic-bottle type" photoelectron (PE) spectrometer is used for fs pump-probe investigations of the excited state dynamics of thiophene. A resonant two-photon ionization spectrum of the onset of the excited states has been recorded with a tunable UV laser of 190 fs pulse width. With the pump laser set to the first intense transition we find by UV probe ionization first a small time shift of the maxima in the PE spectrum and then a fast decay to a low constant intensity level. The fitted time constants are 80+/-10 fs, and 25+/-10 fs, respectively. Theoretical calculations show that upon geometry relaxation the electronic state order changes and conical intersections between excited states exist. We use the vertical state order S1, S2, S3 to define the terms S1, S2, and S3 for the characterization of the electron configuration of these states. On the basis of our theoretical result we discuss the electronic state order in the UV spectra and identify in the photoelectron spectrum the origin of the first cation excited state D1. The fast excited state dynamics agrees best with a vibrational dynamics in the photo-excited S1 (80+/-10 fs) and an ultrafast decay via a conical intersection, presumably a ring opening to the S3 state (25+/-10 fs). The subsequently observed weak constant signal is taken as an indication, that in the gas phase the ring-closure to S0 is slower than 50 ps. An ultrafast equilibrium between S1 and S2 before ring opening is not supported by our data.  相似文献   

14.
The excited state dynamics of two protonated tripeptides GWG and GYG has been investigated by pump/probe femtosecond measurements on photofragments, to explore the behavior of peptides where the terminal protonated amino group is not directly linked to the aromatic residue. The dynamics observed are short and surprisingly similar to the dynamics observed on the free protonated tryptophan and tyrosine aromatic amino acids. Specific photofragments observed for protonated GWG are related to the formation of a radical species WG degrees (+) after cleavage of the C(alpha)-N bond near the tryptophan residue.  相似文献   

15.
For this study, multiphoton ionization/mass spectrometry using an ultraviolet (UV) femtosecond laser was employed for the trace analysis of organic compounds. Some of the molecules, such as dioxins, contain several chlorine atoms and have short excited-state lifetimes due to a "heavy atom" effect. A UV femtosecond laser is, then, useful for efficient resonance excitation and subsequent ionization. A technique of multiphoton ionization using an extremely short laser pulse (e.g., <10 fs), referred to as "impulsive ionization," may have a potential for use in fragmentation-free ionization, thus providing information on molecular weight in mass spectrometry.  相似文献   

16.
When excited (monochromatically or with λ ⩾ 280 nm) in benzene solution in the presence of nitroaromatic acceptors, several 7-dialkylamino-coumarins undergo moderately efficient mono-N-dealkylation to form 7-alkylaminocoumarins, accompanied by the reduction of the nitro function in the acceptor. For 7-(N,N-diethylamino)-4-methylcoumarin (1a) a linear plot of øP−1 versus the reciprocal of the concentration of the starting material suggests that two molecules of 1a are involved in the dealkylation of irradiated 1a by ground state 3-chloronitrobenzene. When the concentration of 1a is kept constant but that of the acceptor is varied, øP goes through a maximum at intermediate concentrations. Furthermore, øP is found to be larger for weaker acceptors (more negative reduction potential) than for stronger acceptors (less negative reduction potential). The rigid dye Coumarin 102 does not show any analogous decomposition. All results are interpreted in terms of the interference of the nitroaromatic with the self-quenching mechanism of coumarin N-dealkylation put forward recently by Jones and coworkers.  相似文献   

17.
Steady-state fluorescence and time-resolved absorption measurements in pico- and femtosecond time domain have been used to investigate the dynamics of hydrogen bond in the excited singlet (S(1)) state of fluorenone in alcoholic solvents. A comparison of the features of the steady-state fluorescence spectra of fluorenone in various kinds of media demonstrates that two spectroscopically distinct forms of fluorenone in the S(1) state, namely the non-hydrogen-bonded (or free) molecule as well as the hydrogen-bonded complex, are responsible for the dual-fluorescence behavior of fluorenone in solutions of normal alcoholic solvents at room temperature (298 K). However, in 2,2,2-trifluoroethanol (TFE), a strong hydrogen bond donating solvent, emission from only the hydrogen-bonded complex is observed. Significant differences have also been observed in the temporal evolution of the absorption spectroscopic properties of the S(1) state of fluorenone in protic and aprotic solvents following photoexcitation using 400 nm laser pulses. An ultrafast component representing the solvent-induced vibrational energy relaxation (VER) process has been associated with the dynamics of the S(1) state of fluorenone in all kinds of solvents. However, in protic solvents, in addition to the VER process, further evolution of the spectroscopic and dynamical properties of the S(1) state have been observed because of repositioning of the hydrogen bonds around the carbonyl group. In normal alcohols, two different kinds of hydrogen-bonded complex of the fluorenone-alcohol system with different orientations of the hydrogen bond with respect to the carbonyl group and the molecular plane of fluorenone have been predicted. On the other hand, in TFE, formation of only one kind of hydrogen-bonded complex has been observed. These observations have been supported by theoretical calculations of the geometries of the hydrogen-bonded complexes in the ground and the excited states of fluorenone. Linear correlation between the lifetimes of the equilibration process occurring because of repositioning of the hydrogen bonds and Debye or longitudinal relaxation times of the normal alcoholic solvents establish the fact that, in weakly hydrogen bond donating solvents, the hydrogen bond dynamics can be described as merely a solvation process. Whereas, in TFE, hydrogen bond dynamics is better described by a process of conversion between two distinct excited states, namely, the non-hydrogen-bonded form and the hydrogen-bonded complex.  相似文献   

18.
Femtosecond laser pump–probe techniques are employed to investigate the mechanisms and dynamics of the photodissociation of HMX and RDX from their excited electronic states at three wavelengths (230 nm, 228 nm, and 226 nm). The only observed product is the NO molecule. Parent HMX and RDX ions are not observed. The NO molecule has a resonant A2Σ ← X2Π (0, 0) transition at 226 nm and off-resonance two-photon absorption at 228 nm and 230 nm. Pump–probe transients of the NO product at both off-resonance and resonance absorption wavelengths indicate the decomposition dynamics of HMX and RDX falls into the timescale of our laser pulse duration (180 fs).  相似文献   

19.
Ultrafast relaxation dynamics of the S2 and S1 states of 4,4'-bis(N,N-dimethylamino)thiobenzophenone (Michler's thione, MT) have been investigated in different kinds of solvents, using steady-state absorption and emission as well as femtosecond transient absorption and fluorescence up-conversion spectroscopic techniques. Steady-state fluorescence measurements, following photoexcitation to the S2 state of MT, reveal weak fluorescence from the S2 state (phi F approximately 10(-3) in nonpolar and 10(-4) in polar solvents) but much weaker fluorescence from the S1 state. Yield of fluorescence from the S2 state is reduced in polar solvents because of reduced energy gap between the S2 and S1 states, Delta E(S2-S1), as well as interaction with the solvent molecules. Occurrence of S2-fluorescence in polar solvents, despite small energy gap, suggests that symmetry allowed S2(1A1) --> S0 (1A1) radiative and symmetry forbidden S2(1A1) --> S1 (1A2) nonradiative transitions are the factors responsible for the S2 fluorescence in MT. Lifetime of the S2 state is shorter (varying in the range 0.28-3.5 ps in different solvents) than that predicted from the Delta E(S2-S1) value and this can be attributed to its flexible molecular structure, which promotes an efficient intramolecular radiationless deactivation pathways. The lifetime of the S1 state (approximately 1.9-6.5 ps) is also very short because of small energy difference between the S1 and T1 states (Delta E(S1-T1) approximately 300 cm(-1)) in cyclohexane and hydrogen-bonding interaction as well as the presence of the isoenergetic T1(pipi*) state to enhance the rate of the intersystem crossing process from the S1(npi*) state in protic solvents.  相似文献   

20.
The dissociation dynamics of the 6s and 4d Rydberg states of carbon disulfide (CS(2)*) are studied by time-resolved photoelectron spectroscopy. The CS(2) is excited by two photons of 267 nm (pump) to the 6s and 4d Rydberg states and probed by ionization with either 800 or 400 nm. The experiments can distinguish and successfully track the time dynamics of both spin [1/2] (upper) and [3/2] (lower) cores of the excited Rydberg states, which are split by 60 meV, by measuring the outgoing electron kinetic energies. Multiple mode vibrational wave packets are created within the Rydberg states and observed through recurrence interferences in the final ion state. Fourier transformation of the temporal response directly reveals the coherent population of several electronic states and vibrational modes. The composition of the wave packet is varied experimentally by tuning the excitation frequency to particular resonances between 264 and 270 nm. The work presented here shows that the decay time of the spin components exhibits sensitivity to the electronic and vibrational states accessed in the pump step. Population of the bending mode results in an excited state lifetime of as little as 530 fs, as compared to a several picosecond lifetime observed for the electronic origin bands. Experiments that probe the neutral state dynamics with 400 nm reveal a possible vibrationally mediated evolution of the wave packet to a different Franck-Condon window as a consequence of Renner-Teller splitting. Upon bending, symmetry lowering from D(infinityh) to C(2v) enables ionization to the CS(2) (+) (B (2)Pi(u)) final state. The dissociation dynamics observed are highly mode specific, as revealed by the frequency and temporal domain analysis of the photoelectron spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号