首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electronic properties of a single layer (SL) of pentacene molecules are investigated by high-resolution UV photoemission and near-edge X-ray absorption spectroscopy in different configurations of the SL, either standing up on an aromatic self-assembled monolayer or planar on a bare Cu(001) substrate. The weakly interacting pentacene molecules in the standing-up SL present a semiconducting character, and the empty states distribution reflects that of gas-phase pentacene, while the planar pentacene-Cu system shows a metallic interface with redistribution of the empty molecular states. The highest-occupied molecular orbital lineshape in the weakly interacting SL shows a double structure, attributed to two nonequivalent molecules in the ordered configuration.  相似文献   

2.
Organic molecular beam co-deposition of rodlike conjugated molecules with an alkylated analogue resulted in thin film structures with layers of alternating semiconducting (conjugated molecular parts) and insulating (alkyl parts) character. By varying the alkylated molecule ratio, we could adjust the distance between conjugated layers with sub-nanometer precision, exploiting the mechanical flexibility of the alkyl chains. Furthermore, due to mutual molecular intercalation, mixed layers containing two conjugated moieties with vastly different electronic properties could be fabricated.  相似文献   

3.
We present a methodology for computing photocurrent production in molecular semiconducting molecules. Our model combines a single-configuration interaction picture with the nonequilibrium Green's function approach to compute the current response of a molecular semiconducting wire following excitation. We give detailed analysis of the essential excitonic, charge transfer, and dipole states for poly-(phenylenevinylene) chains of length 32 and 48 repeat units under an electric field bias and use this to develop a reduced dimensional tunneling model which accounts for chain-length and field-dependent behavior. In this paper, we consider the decay of an excited electron/hole state on a molecular wire under bias attached to semiconducting leads at either end. We find that the current produced by the decay of an excitation depends not only upon the lifetime of the state, as given by the imaginary part of its complex eigenvalue, but also upon the net charge on terminal ends of the molecule. We also find that weakly bound electron/hole charge-transfer pairs can decay into the continuum via field induced tunneling and produce a net current whereas excitonic states decay via tunneling but give no net current contribution.  相似文献   

4.
A series of model molecules [sequential quinone (Q) or hydroquinone (HQ) rings connected by triple bonds] as molecular wires have been investigated by using density functional theory combined with nonequilibrium Green's function method. The results show that the system has two discrete conductance states: a low-conductance state with Q form, and a high-conductance state with HQ form. The systematic investigations have suggested that more Q/HQ pairs in the system may improve the on/off ratio, though long molecule reduces the conductance of the molecular junction. The switch mechanism has been explained via molecular electronic structure as well as transmission spectra.  相似文献   

5.
We consider photoinduced electronic transitions through conical intersections in large molecules. Starting from the linear vibronic model Hamiltonian and treating linear diabatic couplings within the second order cumulant expansion, we have developed a simple analytical expression for the time evolution of electronic populations at finite temperature. The derived expression can be seen as a nonequilibrium generalization of the Fermi golden rule due to a nonequilibrium character of the initial photoinduced nuclear distribution. All parameters in our model are obtained from electronic structure calculations followed by a diabatization procedure. The results of our model are found to agree well with those of quantum dynamics for a test set of systems: fulvene molecule, 2,6-bis(methylene) adamantyl cation, and its dimethyl derivative.  相似文献   

6.
The infrared spectra of the crystal of transition metal complex molecules with extended-TTF ligands, Ni(tmdt)2, which is the first single-component molecular metal that has a stable metallic state even at low temperatures, exhibited an extremely low-energy electronic absorption around 2200 cm-1 (tmdt = trimethylenetetrathiafulvalenedithiolate). The systematic shift of the absorption peaks for molecules similar to Ni(tmdt)2, which range from metallic to semiconducting crystals, shows that the single-component molecular conductors are composed of molecules with unprecedentedly small HOMO-LUMO gaps.  相似文献   

7.
Self-assembled supramolecular networks are promising spacer layer for electronic decoupling from the metal substrate.However,the mechanism behind of how the intrinsic electronic structure of spacer layers affects the adsorbate is still unclear.Here a hydrogen bonded network composed of n-type semiconducting molecules 3,4,9,10-perylene-tetracarboxylic-dianhydride(PTCDA)is prepared under ultra-high vacuum to serve as a spacer layer for functional organics C60 on Au(111).The geometric and electronic information of C60 was investigated by scanning tunneling microscopy and scanning tunneling spectroscopy(STM/STS)at 5 K.Effective decoupling from the metal surface yields an energy gap of 3.67 eV for C602nd,merely considering the HOMO-LUMO peak separation.The broadening of resonance peaks in STS measurements however indicates unneglected interlayer interactions in this hetero-organic system.Moreover,we scrutinize the nucleation sites of C60 on PTCDA layer and attribute this to the decreased diffusion capability on a less dense molecular arrangement possessing inhomogeneous spatial distribution of unoccupied molecular orbitals.  相似文献   

8.
One of the challenges in molecular electronics is to design molecules which can be used as functional units in electronic devices. The subject of our investigations is an asymmetrical molecule, dihydroxy(4-thiomorpholinomethyl)benzoic acid (TMBA), whose structural and electronic properties are characterized. The self-assembly behavior of TMBA on Au(111) surfaces resulting in highly ordered monolayers is obtained using scanning tunneling microscopy (STM). Furthermore, investigations on the electronic properties of the combined metal/molecule system reveal an orbital mediated tunneling process and tunneling decay constants for the carboxylic and thiomorpholino group. Thus, a diode-like character of TMBA is shown to be caused by intrinsic electronic properties of different molecular moieties.  相似文献   

9.
The room temperature thermoelectric properties of a three-dimensional array of molecular junctions are calculated. The array is composed of n-doped silicon nanoparticles where the surfaces are partially covered with polar molecules and the nanoparticles are bridged by trans-polyacetylene molecules. The role of the polar molecules is to reduce the band bending in the n-doped silicon nanoparticles and to shift the electronic resonances of the bridging molecules to the nanoparticle conduction band edges where the molecular resonances act as electron energy filters. The transmission coefficients of the bridging molecules that appear in the formulas for the Seebeck coefficient, the electrical conductance, and the electronic thermal conductance, are calculated using the nonequilibrium Green's function technique. A simple tight-binding Hamiltonian is used to describe the bridging molecules, and the self-energy term is calculated using the parabolic conduction band approximation. The dependencies of the thermoelectric properties of the molecular junctions on the silicon doping concentration and on the molecule-nanoparticle coupling are discussed. The maximal achievable thermoelectric figure of merit ZT of the array is estimated as a function of the phononic thermal conductance of the bridging molecules and the doping of the nanoparticles. The power factor of the array is also calculated. For sufficiently small phononic thermal conductances of the bridging molecules, very high ZT values are predicted.  相似文献   

10.
We consider several fundamental optical phenomena involving single molecules in biased metal-molecule-metal junctions. The molecule is represented by its highest occupied and lowest unoccupied molecular orbitals, and the analysis involves the simultaneous consideration of three coupled fluxes: the electronic current through the molecule, energy flow between the molecule and electron-hole excitations in the leads, and the incident and/or emitted photon flux. Using a unified theoretical approach based on the nonequilibrium Green's function method we derive expressions for the absorption line shape (not an observable but a useful reference for considering yields of other optical processes) and for the current induced molecular emission in such junctions. We also consider conditions under which resonance radiation can induce electronic current in an unbiased junction. We find that current driven molecular emission and resonant light induced electronic currents in single molecule junctions can be of observable magnitude under appropriate realizable conditions. In particular, light induced current should be observed in junctions involving molecular bridges that are characterized by strong charge-transfer optical transitions. For observing current induced molecular emission we find that in addition to the familiar need to control the damping of molecular excitations into the metal substrate the phenomenon is also sensitive to the way in which the potential bias is distributed on the junction.  相似文献   

11.
We report the density-functional calculations of NO2 adsorption on single-walled carbon nanotube walls. A single molecular adsorption was endothermic with an activation barrier, but a collective adsorption with several molecules became exothermic without an activation barrier. We find that NO2 adsorption is strongly electronic structure- and strain-dependent. The NO2 adsorption on metallic nanotubes was energetically more favorable than that on semiconducting nanotubes and furthermore the adsorption became less stable with increasing diameters of nanotubes. The adsorption barrier height shows similar dependence on the electronic structure and diameter to the adsorption energy. Our theoretical model can be a good guideline for the separation of nanotubes by electronic structures using various adsorbates.  相似文献   

12.
Solution processable organic semiconducting small molecules are desirable for the manufacture of low-cost, large-area electronic products on flexible substrates. This article provides an overview of recent progress in OFETs based on solution processable small molecules that can be converted to insoluble organic semiconducting materials on films by thermal or photochemical removal of leaving groups after fabrication of the film.  相似文献   

13.
The quantum transport of a gated polythiophene nanodevice is analyzed using density functional theory and nonequilibrium Green's function approach. For this typical molecular field effect transistor, we prove the existence of two main features of electronic components, i.e., negative differential resistance and good switching. Ab initio based explanations of these features are provided by distinguishing fixed and shifting conducting states, which are shown to arise from the interface and functional molecule, respectively. The results show that proper functional molecules can be used in conjunction with metallic electrodes to achieve basic electronics functionality at molecular length scales.  相似文献   

14.
A review is presented of the nonequilibrium Green's function (NEGF) method "gDFTB" for evaluating elastic and inelastic conduction through single molecules employing the density functional tight-binding (DFTB) electronic structure method. This focuses on the possible advantages that DFTB implementations of NEGF have over conventional methods based on density functional theory, including not only the ability to treat large irregular metal-molecule junctions with high nonequilibrium thermal distributions but perhaps also the ability to treat dispersive forces, bond breakage, and open-shell systems and to avoid large band lineup errors. New results are presented indicating that DFTB provides a useful depiction of simple gold-thiol interactions. Symmetry is implemented in DFTB, and the advantages it brings in terms of large savings of computational resources with significant increase in numerical stability are described. The power of DFTB is then harnessed to allow the use of gDFTB as a real-time tool to discover the nature of the forces that control inelastic charge transport through molecules and the role of molecular symmetry in determining both elastic and inelastic transport. Future directions for the development of the method are discussed.  相似文献   

15.
Acepleiadylene (APD), a nonbenzenoid isomer of pyrene, exhibits a unique charge-separated character with a large molecular dipole and a small optical gap. However, APD has never been explored in optoelectronic materials to take advantage of these appealing properties. Here, we employ APD as a building block in organic semiconducting materials for the first time, and unravel the superiority of nonbenzenoid APD in electronic applications. We have synthesized an APD derivative (APD-IID) with APD as the terminal donor moieties and isoindigo (IID) as the acceptor core. Theoretical and experimental investigations reveal that APD-IID has an obvious charge-separated structure and enhanced intermolecular interactions as compared with its pyrene-based isomers. As a result, APD-IID displays significantly higher hole mobilities than those of the pyrene-based counterparts. These results imply the advantages of employing APD in semiconducting materials and great potential of nonbenzenoid polycyclic arenes for optoelectronic applications.  相似文献   

16.
Using density functional theory(DFT) combined with nonequilibrium Green's function investigates the electron-transport properties of several molecular junctions based on the PBTDT-CH=NH molecule, which is modified by one to four alkyl groups forming PBTDT-(CH_2)_nCH=NH. The electronic structures of the isolated molecules(thiol-ended PBTDT-(CH2)_nCH=N) have been investigated before the electron-transport calculations are performed. The asymmetric current-voltage characteristics have been obtained for the molecular junctions. Rectifying performance of Au/S-PBTDT-CH=N-S/Au molecular junction can be regulated by introducing alkyl chain. The N3 molecular junction exhibits the best rectifying effect. Its maximum rectifying ratio is 878, which is 80 times more than that of the molecular junction based on the original N molecular junction. The current-voltage(I-V) curves of all the sandwich systems in this work are illustrated by transmission spectra and molecular projection density analysis.  相似文献   

17.
Recent literature reports indicate that derivatives of benzothiadiazole (BT) and benzobis(thiadiazole) (BBT), which differs from BT by an extra thiadiazole ring, exhibit good semiconducting properties, such as high electron mobility and low-lying lowest unoccupied molecular-orbital (LUMO) levels. In this study herein, computational techniques like density functional theory (DFT), spin-flip DFT and valence-bond methods are used to analyze the semiconducting properties of these molecules. Calculations at the B3LYP/cc-pVTZ level reveal that all the BBT molecules, including the bare BBT ring, have lower lying LUMO energies (3.70-4.11 eV) compared to the BT derivatives (2.56-3.41 eV) with similar substitution. The reorganization energies (λ(+)/λ(-)) obtained at this level of theory of the BT derivatives are around (225-333)/(246-315) meV, while BBT derivatives have much smaller reorganization energies and these are in the range of (129-259)/(150-230) meV. We observe that the different behavior of BBT is due to the inherited biradicaloid character from the parent molecule tetramethylenebenzene (TMB), a disjoint non-Kekule biradical having non-bonding molecular orbitals (NBMOs) as the highest occupied molecular orbital (HOMO) and LUMO. Additionally, the perturbation of the orbitals of the biradical TMB to obtain BBT is the major cause for the BBT derivatives to have a larger electron affinity (EA) and a smaller HOMO-LUMO gap (HLG) compared to BT derivatives.  相似文献   

18.
Analogous to a quantum double-dot system, diblock structured molecules could also show negative differential resistance (NDR). Using combined density functional theory and nonequilibrium Green function technique, we show that molecular-level crossing in a molecular double-dot system containing cobaltocene and ferrocene leads to NDR and hysteresis.  相似文献   

19.
Magnetic and electrical resistivity properties of RMo(8)O(14) (R = La, Ce, Pr, Nd, Sm) compounds containing different bicapped-octahedral Mo(8) clusters are discussed. Extended Hückel (EH) molecular calculations were carried out in order to study the influence of the position of metal capping atoms on the electronic structure of different Mo(8) isomers. Different optimal metal electron counts are possible for these clusters. Periodic density functional calculations confirm the molecular character of these compounds and allow the understanding of their semiconducting and magnetic properties.  相似文献   

20.
The role of metastable excited atoms and molecules in the mechanisms of physicochemical processes and diagnostics of quasi-equilibrium and nonequilibrium atomic and molecular electric-discharge plasmas is analyzed. The consideration is focused on the mechanism of excitation of electronic and vibronic states, as emission from these levels form optical spectra used for plasma diagnostics. The contribution of metastable excited species to other physicochemical processes: dissociation, chemical reactions involving atoms and molecules, ionization, ion-electron recombination, and ion conversion, is briefly discussed. It is shown that the participation of metastable species should be taken into account before application of spectral methods of plasma diagnostics, especially, at elevated (atmospheric and higher) pressures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号