首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The shear-induced concentration fluctuations or phase separation of a semidilute solution comprised of polystyrene (PS) as a solute and dioctylphthalate (DOP) as a solvent (PS/DOP) was investigated by using real-time and in-situ shear-small-angle light scattering and shear-phase-contrast optical microscopy. When a transient shear flow with a fixed shear rate γ greater than a critical value γC was imposed on the solution, a unique anisotropic scattering pattern was observed some time after onset of shear. This pattern was found to be identical to the “butterfly pattern” previously reported for the same solutions under steady shear flow with γC. When the shear flow was ceased before the scattered intensity reached a steady state, the scattered intensity rapidly increased toward a maximum intensity, and then decreased toward the intensity of the quiescent solution with time. From the phase-contrast microscopy, this immediate increment of the scattered intensity after the shear cessation was found to arise from the increment in amplitude of the concentration fluctuations along flow direction. The characteristic length scale of the fluctuations was about 2.5 μm in this experiment, almost independent of the shear rate imposed on the solution.  相似文献   

2.
The nonlinear rheology of aqueous solutions of cetyltrimethylammonium bromide (CTAB) and sodium salicylate (NaSal) was investigated. The concentration of CTAB was fixed at 0.1 mol L(-1), and the concentration of NaSal was varied from 0.07 to 0.4 mol L(-1). For all test solutions, dynamic moduli were described with the Maxwell model having a single relaxation time, tau. Time evolutions of the shear stress, sigma, and the first normal stress difference, N(1), after inception of the steady shear flow were measured. For solutions having low NaSal concentrations, strain-hardening was observed and sigma and N(1) diverged at a certain strain when the shear rate, , exceeded tau(-1). For solutions with high NaSal concentrations, stress overshoot similar to that of ordinary entangled polymer solutions was observed at between tau(-1) and a certain critical rate, (C), while the strain-hardening was observed at > (C). A simple relationship for elastic solids, N(1)/sigma = gamma with gamma being the strain imposed by shear flow, held for all the solutions in the strain-hardening regime. The strain-hardening was attributable to the strain-dependent shear modulus and well described with the network theory considering the finite extensibility of network strands. The segment size of network strands was successfully determined. Thus, the stress-strain relationship obtained after the inception of fast flows is useful for characterizing the network properties.  相似文献   

3.
The linear and nonlinear rheology of viscoelastic mixed anionic-zwitterionic surfactant solutions has been systematically investigated. In the linear viscoelastic regime, these systems display nearly Maxwellian behavior with a unique relaxation time, tau0, and a characteristic elastic plateau modulus, G0. Linear rheological data were used to calculate the repitation and breaking times of the micelles, tau(rep) and tau(b), respectively. Surprisingly, the elastic modulus G0 significantly increases with salt concentration c(s), whereas tau(b) decreases by 1 order of magnitude. The strong effect of c(s) on the material parameters and microstructure of rodlike micelles allowed for the systematic investigation of the effect of these parameters on nonlinear flow. For samples with relatively long tau(b), the quasi-static flow diagram (stress vs shear rate) shows a stress peak followed by a metastable branch (a region of decreasing shear stress), whereas for samples with relatively short tau(b), this phenomenon is not observed. Transient flow responses corroborate quasi-static flow findings and further reveal the significance of microscopic dynamic parameters on flow behavior. Shear stress time series were recorded at constant shear rates, and above a critical shear rate, gamma(c2), stress fluctuations are observed. The amplitude of these stress fluctuations, Delta sigma, was found to scale as Delta sigma approximately equal to G0(tau(b)| gamma - gamma(c2)|)beta with beta approximately 0.5. This scaling is observed for micellar systems with tau(b) ranging from 0.12 to 0.01 s and G0 ranging from 1 x 10(3) to 7 x 10(3) dyn/cm2.  相似文献   

4.
The flowing nature and rheological properties of polymethyl methacrylate latex systems in a coaxial cylinder viscometer were studied on the basis of laminar shear flow model and rheological experimental data. The physical meaning of laminar viscosity (eta(i,j)) and zero shear viscosity (eta(0)) were described. We assumed that laminar shear flows depended on position and shear time, so microrheological parameters were the function of position and shear time. eta(i,j) was the viscosity of any shear sheet i between two neighboring laminar shear flows at time t; j was denoted as j=t/Deltat; and Deltat was the interacting time of two particles or two laminar shear flows. tau(i,j) and gamma(i,j) were shear stress and shear rate of any shear sheet i at j moment. According to Newton regulation tau(i,j)=eta(i,j)gamma(i,j), apparent viscosity eta(a) should be a statistically mean value of j shear sheets laminar viscosity at j moment, i.e., eta(a)= summation operator(i=j)eta(i,j)gamma(i,j)/ summation operator(i=j)gamma(i,j). eta(0) was defined as shear viscosity between a laminar shear flow and a still fluid surface, i.e., eta(0)=(tau(i,j)/gamma(i,j))(j-i-->0). These new ideas described above may be helpful in the study of the micromechanisms of latex particle systems and worthy of more research.  相似文献   

5.
The steady-state shear and linear viscoelastic deformations of semidilute suspensions of rod-shaped nanocrystalline cellulose (NCC) particles in 1.0% hydroxyethyl cellulose and carboxymethyl cellulose solutions were investigated. Addition of NCC at the onset of semidilute suspension concentration significantly altered the rheological and linear viscoelastic properties of semidilute polymer solutions. The low-shear viscosity values of polymers solutions were increased 20-490 times (depending on polymer molecular weight and functional groups) by the presence of NCC. NCC suspensions in polymer solutions exhibited yield stresses up to 7.12 Pa. Viscoelasticity measurements also showed that NCC suspended polymer solutions had higher linear elastic moduli than the loss moduli. All of those results revealed the gel formation of NCC particles and presence of internal structures. The formation of a weak gel structure was due to the nonadsorbing macromolecules which caused the depletion-induced interaction among NCC particles. A simple interaction energy model was used to show successfully the flocculation of NCC particles in the presence of nonadsorbing polymers. The model is based on the incorporation of the depletion interaction term between two parallel plates into the DLVO theory for cubic prismatic rod shaped NCC particles.  相似文献   

6.
The effect of phase‐separated morphology on the rheological properties of polystyrene/poly(vinyl methyl ether) (PS/PVME) blend was investigated by optical microscopy (OM), light scattering (LS) method, and rheology. The blend had a lower critical solution temperature (LCST) of 112°C obtained by turbidity experiment using LS at a heating rate of 1°C/h. Three different blend compositions (critical 30/70 PS/PVME by weight) and two off‐critical (50/50 and 10/90)) were prepared. The rheological properties of each composition were monitored with phase‐separation time after a temperature jump from a homogeneous state to the preset phase‐separation temperature. For the 30/70 and 50/50 blends, it was found that with phase‐separation time, the storage and loss moduli (G′ and G″) increased at shorter times due to the formation of co‐continuous structures resulting from spinodal decomposition. Under small oscillatory shearing, shear moduli gradually decreased with time at longer phase‐separation times due to the alignment of co‐continuous structures toward the flow direction, as verified by scanning electron microscopy. However, for the 10/90 PS/PVME blend, the rheological properties did not change with phase‐separation times. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 889–906, 1999  相似文献   

7.
The structure of flexible polymers endgrafted in cylindrical pores of diameter D is studied as a function of chain length N and grafting density sigma, assuming good solvent conditions. A phenomenological scaling theory, describing the variation of the linear dimensions of the chains with sigma, is developed and tested by molecular dynamics simulations of a bead-spring model. Different regimes are identified, depending on the ratio of D to the size of a free polymer N(3/5). For D>N(3/5) a crossover occurs for sigma=sigma*=N(-6/5) from the "mushroom" behavior (R(gx)=R(gy)=R(gz)=N(35)) to the behavior of a flat brush (R(gz)=sigma(1/3)N,R(gx)=R(gy)=sigma(-1/12)N(1/2)), until at sigma**=(D/N)3 a crossover to a compressed state of the brush, [R(gz)=D,R(gx)=R(gy)=(N(3)D/4sigma)(1/8)相似文献   

8.
The rheological behavior of unentangled and entangled semidilute solution of anionic polyelectrolyte sodium carboxymethyl cellulose (NaCMC) containing cationic surfactant cetyltrimethylammonium bromide (C16TAB) was investigated. The results reveal that the rheological properties of these semidilute NaCMC solutions depend on the amount of C16TAB added. In the unentangled semidilute NaCMC solution (0.5 g/L), the viscosity decreases with the increase of C16TAB amount in the low surfactant concentration region (below the critical aggregation concentration, CAC). However, in high surfactant concentrations (above CAC), the viscosity decreases sharply with the increase in C16TAB amount. It is found that viscosity change of NaCMC solution could be described using Colby’s model when surfactant concentrations are between CAC and saturated concentration (Cs), suggesting that no inter-polymer interaction exists between C16TAB and NaCMC in the unentangled semidilute solution. However, for the entangled semidilute NaCMC solution (5 g/L), the addition of C16TAB leads to an increase in viscosity. Meanwhile, the solution exhibits an enhanced shear thinning behavior due to adding more C16TAB than 1 mM. The viscosity increase is ascribed to the physical cross linking of surfactant micelles with NaCMC chains. Furthermore, it is suggested that the enhanced shear thinning behavior results from weak interaction between NaCMC chains and C16TAB micelles.  相似文献   

9.
Polytetrafluoroethylene (PTFE) was extruded from a capillary rheometer at temperatures between the first-order transition at 30°C and the melting point. Both PTFE at 50–300°C and various smectic states of certain low-molecular benzylidene anilines obey the following relationship between the shear stress τ and the apparent shear rate $ \dot \gamma :{\rm }\tau = K\dot \gamma ^{{1 \mathord{\left/ {\vphantom {1 4}} \right. \kern-\nulldelimiterspace} 4}} $. The apparent viscosities for the two classes of substances are similar even though their molecular weights differ by a factor of about 104. Both have characteristic shear planes which are parallel to the polymer chains in PTFE and normal to the long axes of the benzylidene aniline molecules. The melting process in virgin PTFE begins near 300°C. Above this temperature, the shear stress at constant shear rate increases and the rheological exponent rises from 0.25 toward 0.5 at the final melting point.  相似文献   

10.
利用光学显微镜-剪切台联用系统研究了振荡剪切流场下聚苯乙烯(PS)/聚甲基乙烯基醚(PVME)/二氧化硅(SiO2)纳米粒子复合物的热力学稳定性. 结果表明,小振幅振荡剪切可导致PS/PVME共混物出现类似在稳态流场下的剪切诱导相容及剪切诱导相分离现象. 共混体系存在临界振荡频率ωc,当振荡频率低于ωc时,发生剪切诱导相分离(SID)行为,反之发生剪切诱导相容(SIM)行为. SiO2纳米粒子的加入使复合体系的相容性提高. 存在一个临界SiO2纳米粒子含量φc,当SiO2纳米粒子含量高于φc时,复合体系中不存在临界振荡频率ωc,低振荡频率下的剪切诱导相分离得到抑制. 此外,复合体系的上述行为与升温速率和共混物组成密切相关.  相似文献   

11.
The microscopic structure of shear-induced gels for a mixed solution of 2-hydroxyethyl cellulose and nanometer-size spherical droplets has been investigated by in situ small-angle neutron scattering (SANS) with a Couette geometry as a function of shear rate gamma. With increasing gamma, the viscosity increased rapidly at gamma approximately 4.0 s(-1), followed by a shear thinning. After cessation of shear, the system exhibited an extraordinarily large steady viscosity. This phenomenon was observed as a shear-induced sol-gel transition. Real-time SANS measurements showed an increase in the scattering intensity exclusively at low scattering angle region. However, neither orientation of polymer chains nor droplet deformation was detected and the SANS patterns remained isotropic irrespective of gamma. It took about a few days for the gel to recover its original sol state. A possible mechanism of gelation is proposed from the viewpoint of shear-induced percolation transition.  相似文献   

12.
聚苯乙烯/蒙脱土纳米复合材料的自组装行为   总被引:5,自引:0,他引:5  
聚合物/层状硅酸盐(PLS)纳米复合材料由于具有常规复合材料所没有的结构、形态以有较常规聚合物基复合材料更优异的物理力学性能等而引起人们的关注^[1],但以往文献^[1-3]主要报道PLS纳米复合材料的制备与性能表征,对于熔融加工过程中粘土粒子吸高分子的取向和结构研究很少。作者等^[4-6]发现了剥离型聚苯乙烯(PS)/蒙脱土纳米复合材料中的剪切诱导有序结构,并采用广角X射线衍射法(WAXD)、透射电镜法(TEM)和红外二向色性法对其形成机理进行了研究。结果表明,该有序结构的主要来源是分散在PS基体中的蒙脱土初级粒子(Primary particles)内部片层的规整排列以及沿平行于样品表面方面的平面取向,PS的苯环平面平行剪切流动方向取向,而烷项链未见明显取向。本文报道该纳米复合材料的剪切诱导有序结构在升温过程中出现的自组装行为,并用原位升温X射线衍射法和红外二向色性法对蒙脱土初级粒子的规整度以及PS的苯环和烷基链在升温过程中的取向行为进行了研究,在此基础上提出了可能的形成机理。  相似文献   

13.
采用DSR-200动态应力流变仪研究了磺化度为0.98%(摩尔分数)的轻度磺化聚苯乙烯(SPS)离聚物及其锌盐(ZnSPS)与聚苯乙烯(PS)的共混物(PS/SPS,PS/ZnSPS)的流变性能.由于离聚物中离子聚集的物理交联作用,使其流变性能与PS相比有明显差别.动态频率实验结果表明,所有样品均可采用时温等效处理.另外,在与分子链运动相关的低频区,由于离子聚集的作用使得离聚物的模量远大于PS的模量.离聚物在稳态剪切作用下,由于离子聚集的破坏而表现出明显的屈服现象,并能用Utracki的屈服应力公式表征其屈服应力和零切粘度.此外,离聚物的屈服现象还与温度相关.由于动态和稳态实验分别测试离子聚集存在和破坏的不同材料状态,因此对离聚物无法应用Cox-Merz规则.动态和稳态实验结果均表明,PS/SPS和PS/ZnSPS的性能与组成的变化规律不同,意味着二者之间存在不同的离子聚集结构或相互作用.  相似文献   

14.
The rheological properties of non-Brownian carbon nanotube suspensions are measured over a range of nanotube volume fractions spanning the transition from semidilute to concentrated. The polymer-stabilized nanotubes are "sticky" and form a quiescent elastic network with a well-defined shear modulus and yield stress that both depend strongly on nanotube volume fraction with different but related critical exponents. We compare controlled-strain-rate and controlled-stress measurements of yielding in shear flow, and we study the effect of slow periodic stress reversal on yielding and the arrest of flow. Our measurements support a universal scaling of both the linear viscoelastic and steady-shear viscometric response. The former allows us to extract the elastic shear modulus of semidilute nanotube networks for values that are near or below the resolution limit of the rheometers used, while the latter provides a similar extrapolation of the yield stress. A simple scaling argument is used to model the dependence of yield stress and elastic modulus on concentration.  相似文献   

15.
Association under shear flow in aqueous solutions of pectin   总被引:1,自引:0,他引:1  
Effects of oscillatory and steady shear flows on intermolecular associations in dilute and semidilute aqueous solutions of pectin in the absence and presence of the hydrogen bond breaking agent urea are reported. A weak oscillatory shear perturbation builds up, depending on polymer concentration, multichain aggregates or networks in the course of time and these association structures are mainly stabilized through hydrogen bonds. The association effect is more pronounced at higher concentrations, and the growth of intermolecular interactions is inhibited by the addition of urea. Steady shear measurements on the pectin-water solutions reveal shear thickening at low shear rates for all the concentrations, except the lowest one, and disruption of intermolecular junctions at high shear rates. In the presence of urea, no shear thickening is detected. The polymer concentration dependence of the viscosity at a low shear rate can be described by a power law η ∼ cx, with x = 1.9 and 1.4 without and with urea, respectively. When a low constant shear rate is applied to pectin solutions and this monitoring shear rate is interrupted periodically by transitory high shear rates perturbations during a short time, prominent association structures evolve upon return to the monitoring shear rate. This effect is more evident at a lower polymer concentration, and in the presence of urea, the growth of the association complexes is damped. The shear-induced alignment and stretching of polymer chains and the formation of hydrogen-bonded structures are analyzed in the framework of a model, where cooperative zipping of stretched chains play an important role. Viscosity enhancement is found for a semidilute pectin-water solution in the presence of moderate levels of salt addition (NaCl), suggesting that partial screening of electrostatic interactions promotes growth of energetic cross-links.  相似文献   

16.
17.
在恒定剪切速率下,利用旋转流变仪研究端羧基聚丁二烯/蒙脱土纳米复合凝胶的流变行为,同时利用X-射线衍射(XRD)和透射电镜(TEM)等表征手段研究其微观结构.研究结果表明,该体系在26~116℃的升-降温过程中,观察到不可逆转变和可逆转变两种流变行为,其中不可逆转变流变行为归因于蒙脱土片层的剥离过程,而可逆转变流变行为...  相似文献   

18.
Optical properties can estimate morphological changes of polymer chains under flow. This work proposes a rheo-optical procedure to determine turbidity and both flow and form birefringence of diluted polymer mixtures of polystyrene (PS) and polypropylene (PP) during a controlled shear flow, by measuring the transmitted light intensity with and without crossed polarizers via an own built optical sensor. The turbidity in these dilute mixtures decreased with the increase of the shear rate due to deformation of the dispersed phase droplets, which reduces their cross-sections. The presence of PP as the dispersed phase in the PS matrix caused a decrease in the total birefringence measured, whereas PS as the dispersed phase in the PP matrix caused an increase in it. Both effects are associated to the positive contribution of the form birefringence, produced by the shear-induced elongated morphology of the dispersed phase.  相似文献   

19.
The basis for a modification of the Debye-Stokes-Einstein (DSE) equation between the dc conductivity, sigma(dc), and dielectric relaxation time, tau, has been examined by using broad-band dielectric spectroscopy of LiClO4 solutions in 5-methyl-2-hexanol and 1-propanol and of pure liquids. According to the DSE equation, the log sigma(dc)-log tau plots should have a slope of -1. We find that sigma(dc) begins to depend upon the structure of an electrolytic solution when a variation of solvent's equilibrium dielectric permittivity, epsilon(s), with temperature causes the ion population to vary. As a consequence of this intrinsic dependence, the log sigma(dc)-log tau plots do not obey the DSE equation. Inclusion of the effect of change in epsilon(s) on the DSE equation may be useful in analyzing the measured quantities in terms of Brownian diffusion of both ions and molecules in ultraviscous liquids. Proton translocation along a hydrogen bond contributes little to sigma(dc), which appears to be predominantly determined by the ion population in the two alcohols and the solutions. The effect is briefly discussed in the potential energy landscape paradigm of structure fluctuations, and it is suggested that the high-frequency shear modulus measurements of ionic solutions would help reveal the temperature-dependent deviation from the DSE equation.  相似文献   

20.
研究了无鳞鱼———泥鳅的体表黏液流变行为,发现黏液的稳态流动存在着3个不同区域:第一区域内,黏度随剪切速率(γ)变化不显著,呈现牛顿流动行为;第二区域内,随γ增大,黏度下降,呈现非牛顿行为;第三区域内,随γ继续增大,黏度又基本保持不变.黏液表观黏度(ηa)与γ的关系可用Carreau模型很好地拟合,其增比黏度(ηsp)与浓度(c)的关系为ηsp∝c1.5,表明黏液处于亚浓缠结区域.在测试频率(ω)范围内,黏液的动态储能模量(G′)大于动态损耗模量(G″),表明与黏性相比较,弹性占优,且G′及G″随ω变化不显著.存在一临界温度(35℃),当低于35℃时,黏液黏度随温度变化不显著,当高于35℃时,黏液变性,表现出不同的流变行为.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号