首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We use a standard bead-spring model and molecular dynamics simulations to study the static properties of symmetric linear multiblock copolymer chains and their blocks under poor solvent conditions in a dilute solution from the regime close to theta conditions, where the chains adopt a coil-like formation, to the poorer solvent regime where the chains collapse obtaining a globular formation and phase separation between the blocks occurs. We choose interaction parameters as is done for a standard model, i.e., the Lennard-Jones fluid and we consider symmetric chains, i.e., the multiblock copolymer consists of an even number n of alternating chemically different A and B blocks of the same length N(A) = N(B) = N. We show how usual static properties of the individual blocks and the whole multiblock chain can reflect the phase behavior of such macromolecules. Also, how parameters, such as the number of blocks n can affect properties of the individual blocks, when chains are in a poor solvent for a certain range of n. A detailed discussion of the static properties of these symmetric multiblock copolymers is also given. Our results in combination with recent simulation results on the behavior of multiblock copolymer chains provide a complete picture for the behavior of these macromolecules under poor solvent conditions, at least for this most symmetrical case. Due to the standard choice of our parameters, our system can be used as a benchmark for related models, which aim at capturing the basic aspects of the behavior of various biological systems.  相似文献   

2.
The bulk and interfacial properties of ternary mixtures with asymmetric amphiphiles (A2B8) in A2 and B2 matrices and in A2 and B10 matrices are investigated by the dissipative particle dynamics type of molecular-dynamics simulations. The monomer concentrations of A2B8(phiA2B8) studied are below the critical micelle concentration (phiA2B8(cmc)) for the formation of micelles in the presence of an adsorbed amphiphilic monolayer at the interface. Macrophase separation from the mixed phase to the segregated state with A-rich and B-rich coexisting phases and the segregation of A2B8 at the interface are thermodynamically gradual but are accompanied by a pronounced stretching and orientation of the constituent chains. The segregation of A2B8 at the interface broadens the interfacial region and reduces the interfacial tension. The chain conformation of the asymmetric amphiphilic molecules and the interfacial properties are dominated by the majority block in the amphiphilic chain and dependent on the composition of the matrix in contact with the majority block. In the A2 and B2 matrices, the B8 blocks in A2B8 chains at the interface resemble a wet brush swollen by short B2 chains. Swelling is responsible for the pronounced stretching and orienting of the amphiphilic chains and the reduced interfacial amphiphile enrichment. At the same interfacial amphiphile excess, however, swollen amphiphiles are more efficient in reducing the interfacial tension than nonswollen amphiphiles.  相似文献   

3.
The “condensation” of the particles of magnetorheological suspensions (MRSs) under the action of an external magnetic field is theoretically studied. The analysis demonstrated that the formation of rather long linear chain aggregates preceded the condensation of particles into the dense phase. The phase transition of the “gas-liquid” type proceeded in a particle ensemble via the “condensation” of such chains caused by their magnetic interaction. In thin MRS layers oriented perpendicular to the external magnetic field, the scenario of phase transition differs from that observed in systems with infinite volume. After the completion of the phase transition, the ensemble of dense domains discretely distributed in dilute dispersion is formed in thin layers rather than two simple connected phases with different particle concentrations, as it takes place in infinite media. Under fairly strong external magnetic fields, the transition of the “gas-solid” type occurs in a system of particles.  相似文献   

4.
5.
A polymesomorphic thermal phase‐transition of a macrocyclic amphiphile consisting of aromatic groups and oligoethylene glycol (OEG) chains is reported. The macrocyclic amphiphile exists in a highly‐ordered liquid crystal (LC) phase at room temperature. Upon heating, this macrocycle shows phase‐transition from columnar‐lamellar to nematic LC phases followed by crystallization before melting. Spectroscopic studies suggest that the thermally induced crystallization is triggered by a conformational change at the OEG chains. Interestingly, while the macrocycle returns to the columnar‐lamellar phase after cooling from the isotropic liquid, it retains the crystallinity after cooling from the thermally‐induced crystal. Thanks to this bistability, conductance switching was successfully demonstrated. A different macrocyclic amphiphile also shows an analogous phase‐transition behavior, suggesting that this molecular design is universal for developing switchable and memorizable materials, by means of hysteretic phase‐transition processes.  相似文献   

6.
Two novel double hydrophilic multiblock copolymers of N,N-dimethylacrylamide and N-isopropylacrylamide, m-PDMAp-PNIPAMq, with varying degrees of polymerization (DPs) for PDMA and PNIPAM sequences (p and q) were synthesized via consecutive reversible addition-fragmentation chain transfer (RAFT) polymerizations using polytrithiocarbonate (1) as the chain transfer agent (Scheme 1), where PDMA is poly(N,N-dimethylacrylamide) and PNIPAM is poly(N-isopropylacrylamide). The DPs of PDMA and PNIPAM sequences were determined by 1H NMR, and the block numbers, i.e., number of PDMAp-PNIPAMq sequences (n), were obtained by comparing the molecular weights of multiblock copolymers to that of cleaved products as determined by gel permeation chromatography (GPC). m-PDMA42-PNIPAM37 and m-PDMA105-PNIPAM106 multiblock copolymers possess number-average molecular weights (Mn) of 4.62x10(4) and 9.53x10(4), respectively, and the polydispersities (Mw/Mn) are typically around 1.5. Block numbers of the obtained multiblock copolymers are ca. 4, which are considerably lower than the numbers of trithiocarbonate moieties per chain of 1 (approximately 20) and m-PDMAp precursors (approximately 6-7). PDMA homopolymer is water soluble to 100 degrees C, while PNIPAM has been well known to exhibit a lower critical solution temperature (LCST) at ca. 32 degrees C. In aqueous solution, m-PDMA42-PNIPAM37 and m-PDMA105-PNIPAM106 multiblock copolymers molecularly dissolve at room temperature, and their thermo-induced collapse and aggregation properties were characterized in detail by a combination of optical transmittance, fluorescence probe measurements, laser light scattering (LLS), and micro-differential scanning calorimetry (micro-DSC). It was found that chain lengths of PDMA and PNIPAM sequences exert dramatic effects on their aggregation behavior. m-PDMA105-PNIPAM106 multiblock copolymer behaves as protein-like polymers and exhibits intramolecular collapse upon heating, forming unimolecular flower-like micelles above the thermal phase transition temperature. On the other hand, m-PDMA42-PNIPAM37 multiblock copolymer exhibits collapse and intermolecular aggregation, forming associated multimolecular micelles at elevated temperatures. The intriguing aggregation behavior of this novel type of double hydrophilic multiblock copolymers argues well for their potential applications in many fields such as biomaterials and biomedicines.  相似文献   

7.
Using a 2D lattice model, we conduct Monte Carlo simulations of micellar aggregation of linear-chain amphiphiles having two solvophilic head groups. In the context of this simple model, we quantify how the amphiphile architecture influences the critical micelle concentration (CMC), with a particular focus on the role of the asymmetry of the amphiphile structure. Accordingly, we study all possible arrangements of the head groups along amphiphile chains of fixed length N = 12 and 16 molecular units. This set of idealized amphiphile architectures approximates many cases of symmetric and asymmetric gemini surfactants, double-headed surfactants, and boloform surfactants. Consistent with earlier results, we find that the number of spacer units s separating the heads has a significant influence on the CMC, with the CMC increasing with s for s < N/2. In comparison, the influence of the asymmetry of the chain architecture on the CMC is much weaker, as is also found experimentally.  相似文献   

8.
Discontinuous molecular dynamics simulations are performed on surfactant (HmTn)/solvent systems modeled as a mixture of single-sphere solvent molecules and freely jointed surfactant chains composed of m slightly solvent-philic head spheres (H) and n solvent-philic tail spheres (T), all of the same size. We use a square-well potential to account for the head-head, head-solvent, tail-tail, and tail-solvent interactions and a hard-sphere potential for the head-tail and solvent-solvent interactions. We first simulate homopolymer/supercritical CO2 (scCO2) systems to establish the appropriate interaction parameters for a surfactant/scCO2 system. Next, we simulate surfactant/scCO2 systems and explore the effect of the surfactant volume fraction, packing fraction, and temperature on the phase behavior. The transition from the two-phase region to the one-phase region is located by monitoring the contrast structure factor of the equilibrated surfactant/scCO2 system, and the micelle to unimer transition is located by monitoring the aggregate size distribution of the equilibrated surfactant/scCO2 system. We find a two-phase region, a micelle phase, and a unimer phase with increasing packing fraction at fixed temperature or with increasing temperature at fixed packing fraction. The phase diagram for the surfactant/scCO2 system in the surfactant volume fraction-packing fraction plane and the density dependence of the critical micelle concentration are in qualitative agreement with experimental observations. The phase behavior of a surfactant/scCO2 system can be directly related to the solubilities of the corresponding homopolymers that serve as the head and tail blocks for the surfactant. The influence of surfactant structure (head and tail lengths) on the phase transitions is explored.  相似文献   

9.
The collapse behavior of a single comblike copolymer chain has been studied by Monte Carlo simulations. It has been supposed that the solvent is good for the side chains but the solvent quality for the backbone chain changes. It has been shown that depending on the structural parameters of the comb copolymer (the lengths of the backbone and side chains, grafting density of the side chains) various thermodynamically stable morphologies of the collapsed backbone chain can be realized. In addition to ordinary spherical globule we have observed elongated structures as well as necklace-like conformations. The proposed model can be used to describe conformational behavior of stoichiometric complexes between block copolymers with a polyelectrolyte short block and oppositely charged linear homopolymers.  相似文献   

10.
We present a hybrid method to investigate the isotropic-nematic (I-N) transition in athermal solutions of rod-coil copolymers. This method incorporates the scaled-particle theory for semiflexible chains with two-chain Monte Carlo simulation for the osmotic second virial coefficient and for the angle-dependent excluded volume. We compare the theoretical prediction with Monte Carlo simulations for fused rod-coil copolymers and find good agreement for both the equation of state and the orientational order parameter. The theory is also used to examine the effects of the bond length, the chain length, and the chain composition on orientational ordering in athermal solutions of rod-coil block copolymers. It predicts I-N transition in rod-coil copolymers with fixed rod length but a variable flexible tail in good agreement with experiments.  相似文献   

11.
The self‐aggregation behavior of C60 fullerenes that bear two octadecyl chains (lipid 1 ) as well as the structures and electrochemical properties of cast films of 1 are described. We also examined the self‐aggregation behavior in organic solvents of three previously reported compounds: C60 with three each of hexadecyl (lipid 2 ), tetradecyl (lipid 3 ), or dodecyl (lipid 4 ) chains. The fullerene lipids in alcohols spontaneously formed spherical aggregates, whose diameters are related to the alkyl‐chain lengths, concentrations of the fullerene lipids, and the solvent polarity. The morphologies of the aggregates showed temperature dependence. Cast films of 1 formed multimolecular bilayer structures that undergo a phase transition typical of lipid bilayer membranes. The electrochemistry of cast films of 1 on an electrode in aqueous medium exhibits temperature dependence.  相似文献   

12.
The thermotropic behavior of poly(oxyethylene) cholesterol ether surfactants was studied by differential scanning calorimetry and small-angle X-ray scattering. Contrary to what is usually observed in conventional poly(oxyethylene)-type surfactant systems, poly(oxyethylene) cholesterol ether surfactants show a change of the fusion mechanism as the chain length is varied. For long chain lengths (n > or = 15) the usual solid-liquid transition is found, but for short chain lengths (n < or = 10) the transition goes through a birefringent lamellar phase. The appearance of this liquid crystal (LC) phase seems to be related with the predominance of the cholesterol part in the short chain polyoxyethylene surfactants. On the contrary, for long polyexyethylene chains the polymer gains in importance and only a solid crystalline structure is observed at low temperatures. An antiparallel packing structure with totally overlapped chains is found for both, the solid and the LC phase. The chains seem to be in a zigzag configuration, and only for the longest surfactant here studied (n = 30) a change of the chain configuration to a much shorter meander configuration is observed.  相似文献   

13.
由可控聚合,包括活性阴离子和自由基聚合直接制备不同形貌纳米材料,是近几年来合成化学领域的一个重要研究成果.与两亲性嵌段共聚物在选择性溶剂中自组装方法不同,在选择性溶剂中进行的分散聚合,首先生成两亲性嵌段共聚物,并逐渐增加第二段聚合物的链长,以实现相分离,形成球形胶束;聚合物链继续增长,实现形貌转变,从而制备预期的聚合物形貌,包括球形胶束、纳米棒、纳米线、囊泡和复合囊泡等.本文综述了乳液聚合法制备球形胶束等形貌;描述了不同聚合体系形成的形貌以及它们的性质和应用,讨论了形貌的形成机理和控制方法,同时指出了存在的问题.  相似文献   

14.
The effect of alkyl chain length on micelle formation in aqueous solutions of synthetic alkyloxyethyl glycosides containing an ethyl spacer with different conformations of the disaccharide headgroups was investigated. The molecular shape was systematically changed from a wedge-shaped to a rodlike geometry by changing the type of carbohydrate headgroup. The lipophilic part consists of dodecyl or tetradecyl chains. The adsorption at the liquid-air interface was investigated by surface tension measurements. The micellar phase region (L1) was studied using small-angle neutron scattering. We have observed a strong influence of the linkage between the sugar moieties in the disaccharide headgroup and the ethyl spacer on the micellar structure: the transformation from spherical to disklike aggregates was observed for compounds with a rodlike shape, but only spherical aggregates were formed by the wedge-shaped molecules.  相似文献   

15.
Monte Carlo simulations were used to investigate the compatibilizing behaviors of multi-block copolymers with different architectures in A/B/(block copolymer) ternary blends. The volume fraction of homopolymer A, employed as the dispersed phase, was 19%. The simulations illustrate how a di- or multi-block copolymer aggregates at the interfaces and influences the phase behaviour of such incompatible polymer blends. The di-block copolymer chains tend to "stand" on the interface whereas the multi-block chains lie on the interface.In comparison with the dj-block copolymer, the block copolymers with 4, or 10 blocks can occupy more areas on the interface, and thus the multi-block copolymers have higher efficiency for the retardation of the phase separation.  相似文献   

16.
Dissipative particle dynamics, a simulation technique appropriate at mesoscopic scales, has been applied to investigate the interfaces in immiscible binary A/B homopolymer blends and in the ternary systems with their block copolymers. For the binary blends, the interfacial tension increases and the interface thickness decreases with increasing Flory-Huggins interaction parameter chi while the homopolymer chain length is fixed. However, when the chi parameter and one of the homopolymer chain length is fixed, increasing another homopolymer chain length will induce only a small increase on interfacial tension and slight decrease on interface thickness. For the ternary blends, adding the A-b-B block copolymer will reduce the interfacial tension. When the mole number of the block copolymer is fixed, longer block chains have higher efficiency on reducing the interfacial tension than the shorter ones. But for the block copolymers with fixed volume fraction, shorter chains will be more efficient than the longer ones on reducing the interfacial tension. Increasing the block copolymer concentration reduces interfacial tension. This effect is more prominent for shorter block copolymer chains.  相似文献   

17.
With the use of two classes of reversible addition-fragmentation chain-transfer agents??dithiobenzoates and trithiocarbonates??multiblock copolymers based on styrene and n-butyl acrylate, which are the best-studied monomers in these processes, are synthesized. It is shown that the polymers containing dithiobenzoate and trithiocarbonate groups are highly efficient for the synthesis of block copolymers, which is independent of the number of stages at which the polymeric RAFT agents are used in polymerization: In all cases, the polymeric RAFT agent is fully consumed in the polymerization of the ??alien?? monomer. The mechanism governing chain formation during the synthesis of multiblock copolymers, that is, the character of monomer insertion into the polymer chain, via one or both ends, is studied. It is found that the order of monomer loading determines the ratio of chains growing through one or two ends. The thermal stability of amphiphilic multiblock copolymers, their solubility in various solvents, and self-organizing ability are investigated.  相似文献   

18.
研究表面活性剂分子在水溶液中的聚集行为对模拟生物膜功能和研究分子间相互作用具有重要意义"'.用于形成囊泡双分子层的表面活性剂主要是类似天然磷脂的双烷基链两亲分子,单烷基链两亲分子在引人刚性基团时亦可形成双分子膜k'.含SChiff碱基两亲分子在水溶液中的聚集性质及间、尾链长度对SChiff碱基构象的影响已有报道"'.本文报道了这类分子的另一种重要成膜性质,即改变制备条件,可选择性地得到不同聚集结构和相变温度的双分子膜·实验中所用成膜分子为:CH。(CH。)。;OPh-N-CH-PhO(CH;)n;N"(CH。)。Br-(m-4;n-…  相似文献   

19.
A system of compatible self‐avoiding polymer chains solubilized in spherical cores of block copolymer micelles was studied by lattice Monte Carlo simulations. The core is modeled as a spherical cavity on a simple cubic lattice, filled in partially by tethered (core‐forming) chains and partially by free (solubilized) chains. Molecular parameters (e.g., the ratio of the contour length of the model chains to the core radius) correspond to those in real micellar systems. The density (the fraction of lattice sites occupied) is 0.6 which corresponds to swollen micellar cores in real micellar systems. Simulations yield a constant segment density profile in the core. Both the tethered and solubilized chains acquire an ellipsoidal shape. The ellipsoids equivalent to both types of chains are more spherical than those in a melt and strongly oriented. The chains in the core show a Gaussian‐like behavior. Minor deviations from Gaussian behavior for tethered chains are due to surface effects.  相似文献   

20.
Understanding and controlling organic crystallization in solution is a long‐standing challenge. Herein, we show that crystallization of an aromatic amphiphile based on perylene diimide in aqueous media involves initially formed amorphous spherical aggregates that evolve into the crystalline phase. The initial appearance of the crystalline order is always confined to the spherical aggregates that are precursors for crystalline evolution. The change in the solvation of the prenucleation phase drives the crystallization process towards crystals that exhibit very different structure and photofunction. The initial molecular structure and subsequent crystal evolution can be regulated by tuning the hydrophobicity at various stages of crystallization, affording dissimilar crystalline products or hindering crystallization. Thus, the key role of the precrystalline states in organic crystal evolution enables a new strategy to control crystallization by precrystalline state manipulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号