首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Friction properties of cluster-eroded surfaces of synthetic single crystal diamond (Monodite) are compared after erosion with high-speed CO2 cluster beams as well as with corresponding Ar cluster beams, the cluster impact kinetic energy being 100 keV in both cases. The respective friction values are determined by atomic force microscope measurements. Using CO2 clusters, the reactive accelerated cluster erosion (RACE) of the single crystal diamond substrates leads to more than seven times higher friction values than those observed after erosion with non-reactive accelerated Ar clusters. Molecular dynamics calculations reveal related differences in the simulations of respective single cluster impacts already at 2 ps after impact.  相似文献   

2.
Reactive accelerated cluster erosion (RACE) has been used for direct micro- and nanostructuring of bulk diamond. Carbondioxide nanoparticles of about 1000 molecules are accelerated to 100keV energy in order to erode a staircase structure or a toothed wheel into diamond by using appropriate movable or fixed masks. Non-reactive erosion by argon clusters is slower but more effectively polishing. Large-scale molecular dynamics simulations show the nanoparticle impacts to lead to transient craters which relax to a very smooth surface via collective elastic recovery. The enhanced or reduced erosion of the respective cluster material is illuminated.  相似文献   

3.
A portable UHV-compatible gas aggregation cluster source, capable of depositing clean mass-selected nanoclusters in situ, has been used at synchrotron radiation facilities to study the magnetic behaviour of exposed and Co-coated Fe clusters in the size range 250 to 540 atoms. X-ray magnetic circular dichroism (XMCD) studies of isolated and exposed 250-atom clusters show a 10% enhancement in the spin magnetic moment and a 75% enhancement in the orbital magnetic moment relative to bulk Fe. The spin moment monotonically approaches the bulk value with increasing cluster size but the orbital moment does not measurably decay till the cluster size is above ∼ 400 atoms. The total magnetic moments for the supported particles though higher than the bulk value are less than those measured in free clusters. Coating the deposited particles with Co in situ increases the spin moment by a further 10% producing a total moment per atom close to the free cluster value. At low coverages the deposited clusters are super-paramagnetic at temperatures above 10 K but a magnetic remanence at higher temperature emerges as the cluster density increases and for cluster films with a thickness greater than 50 ?(i.e. 2-3 layers of clusters) the remanence becomes greater than that of an Fe film of the same thickness produced by a conventional deposition source. Thick cluster-assembled film show a strong in-plane anisotropy. Received 14 December 2000  相似文献   

4.
Well-defined granular Co/Ag films have been prepared by the co-deposition of in-beam prepared Co clusters and Ag atoms. In this way we were able to study the giant magnetoresistance (GMR) as a function of mean Co cluster size for a fixed Co cluster volume fraction vcl as well as a function of vcl for a fixed . Mean Co cluster size has been varied between and 6.9 nm, Co cluster volume fraction between 5 and 43%. The GMR was measured in-situ at T=4.2 K in magnetic fields 1.2 T. The analysis of the GMR data obtained from these studies clearly shows that spin-dependent scattering at the Co-cluster/Ag-matrix interface is the only relevant scattering mechanism causing the GMR in our well-defined samples. Received: 21 April 1998 / Received in final form: 17 May 1998 / Accepted: 18 May 1998  相似文献   

5.
clusters (solvents being , or ) have been studied by resonance enhanced two photons ionization, leading to the detection of clusters. When water is the solvent, large clusters up to n>50 can be observed, whereas for and no clusters larger than 10 could be evidenced. Because the first step in the ionization process is the excitation from the ground solvated () ion pair state to a covalent excited state, the differences in the cluster size distribution for different solvent may be interpreted as a difference in cluster structures leading to a difference in the charge separation in the ground state. Received: 30 September 1997 / Revised in final form: 30 October 1997 / Accepted: 30 October 1997  相似文献   

6.
A universal probe method for measuring the temperature of large clusters (nanoparticles) in a cluster beam has been proposed and experimentally implemented. The temperature of large van der Waals clusters (nanoparticles) (CO2) N (where N ⩾ 102 is the number of monomers in a cluster) in the cluster beam is measured using this method with SF6 molecules as miniature probe thermometers. The SF6 molecules are captured by the (CO2) N clusters in intersecting cluster and molecular beams and sublimate from the surface of the clusters, carrying information on the velocity and temperature (internal energy) of the clusters. The velocity (kinetic energy) of SF6 molecules sublimating from the surface of the clusters has been measured by the time-of-flight method and the temperature of the clusters has been determined as T cl = (105 ± 15) K.  相似文献   

7.
A new site percolation model, directed spiral percolation (DSP), under both directional and rotational (spiral) constraints is studied numerically on the square lattice. The critical percolation threshold p c ≈ 0.655 is found between the directed and spiral percolation thresholds. Infinite percolation clusters are fractals of dimension d f ≈ 1.733. The clusters generated are anisotropic. Due to the rotational constraint, the cluster growth is deviated from that expected due to the directional constraint. Connectivity lengths, one along the elongation of the cluster and the other perpendicular to it, diverge as pp c with different critical exponents. The clusters are less anisotropic than the directed percolation clusters. Different moments of the cluster size distribution P s(p) show power law behaviour with | p - p c| in the critical regime with appropriate critical exponents. The values of the critical exponents are estimated and found to be very different from those obtained in other percolation models. The proposed DSP model thus belongs to a new universality class. A scaling theory has been developed for the cluster related quantities. The critical exponents satisfy the scaling relations including the hyperscaling which is violated in directed percolation. A reasonable data collapse is observed in favour of the assumed scaling function form of P s(p). The results obtained are in good agreement with other model calculations. Received 10 November 2002 / Received in final form 20 February 2003 Published online 23 May 2003 RID="a" ID="a"e-mail: santra@iitg.ernet.in  相似文献   

8.
The effect of melting transition on the ionization potential has been studied for sodium clusters with 40, 55, 142, and 147 atoms, using ab initio and classical molecular dynamics. Classical and ab initio simulations were performed to determine the ionization potential of Na142 and Na147 for solid, partly melted, and liquid structures. The results reveal no correlation between the vertical ionization potential and the degree of surface disorder, melting, or the total energy of the cluster obtained with the ab initio method. However, in the case of 40 and 55 atom clusters, the ionization potential seems to decrease when the cluster melts. Received 1st November 2002 Published online 24 April 2003 RID="a" ID="a"e-mail: ar@phys.jyu.fi  相似文献   

9.
We have experimentally studied the dissociation/coalescence of internal Plateau borders (PBs) in simple monolayer bubble clusters, as a result of changing the liquid fraction. At large liquid content, the clusters consist of n bubbles of the same size, symmetrically placed around an internal n-sided PB (n-PB). On decreasing the liquid fraction we observed symmetry-breaking transitions in the 4- and 5-bubble clusters (but not in the 3-bubble cluster), followed by dissociation of the PBs. We used the Surface Evolver to determine the various equilibrium configurations of the corresponding two-dimensional wet clusters and their surface energies. The sequence of 4-bubble cluster configurations observed on varying the liquid fraction correlates qualitatively with that predicted on the basis of Surface Evolver calculations. The same is not true of the 5-bubble cluster.  相似文献   

10.
The self-sputtering processes of (111) Si and Al surfaces under bombardment by Si N and Al N ions and clusters (N = 1−60) with the same energy per particle-projectile atom (1 keV/atom) are studied in this paper. The nonlinear effects produced in the target during the development stage of an atomic-collision cascade and during the postcascade stage are analyzed, and a correlation between these effects and secondary emission characteristics is found. The study has been carried out in the framework of classical molecular dynamics. As a result, a number of features of (111) Si and Al surface sputtering and erosion have been revealed. Thus, it has been established that the sputtering yield increases nonadditively as the size N of the implanted cluster increases at N > 10, which is related to the appearance of nonlinear cascades and the postcascade heat spike, and is accompanied by microcrater formation. It is shown that the implantation of clusters into the Si target leads to the formation of amorphous regions.  相似文献   

11.
In this work we present results from a theoretical study on the properties of sodium clusters. The structures of the global total-energy minima have been determined using two different methods. With the parameterized density-functional tight-binding method (DFTB) combined with a genetic-algorithm we investigated the properties of NaN clusters with cluster size up to 20 atoms, and with our own Aufbau/Abbau algorithm together with the embedded-atom method (EAM) up to 60 atoms. The two sets of results from the independent calculations are compared and a stability function is studied as function of the cluster size. Due to the electronic effects included in the DFTB method and the packing effects included in the EAM we have obtained different global-minima structures and different stability functions.  相似文献   

12.
The problem of the Coulomb explosion of a homogeneous cluster with light and heavy ions has been analytically solved. The space-time and spectral distributions of accelerated ions have been obtained. The characteristics of scattered light ions are determined as functions of the atomic composition of the cluster. It has been shown that sources of monoenergetic ions can be created using the interaction of high-power ultrashort laser pulses with molecular clusters.  相似文献   

13.
The deposition of preformed clusters on surfaces has been established as a new way for growing nano-suctures on surfaces. It has been shown that supported island morphology relies on the dynamics of clusters, during the growth, giving rise to shapes from compact to ramified types. This paper identifies and discusses, in the case of antimony cluster deposits, several processes responsible for the non-equilibrium island shapes: limited kinetic cluster aggregation, size dependent coalescence, “wetting-like behavior” of antimony clusters on antimony islands. Using successive predetermined cluster sizes during the deposition process to synthesize polymorphic structure involves the interplay of those mechanisms. Received 1st December 2000  相似文献   

14.
The decay pathway competition between monomer and dimer evaporation of photoexcited cluster ions Au + n, n = 2-27, has been investigated by photodissociation of size-selected gold clusters stored in a Penning trap. For n > 6 the two decay pathways are distinguished by their experimental signature in time-resolved measurements of the dissociation. For the smaller clusters, simple fragment spectra were used. As in the case of the other copper-group elements, even-numbered gold cluster ions decay exclusively by monomer evaporation, irrespective of their size. For small odd-size gold clusters, dimer evaporation is a competitive alternative, and the smaller the odd-sized clusters, the more likely they decay by dimer evaporation. In this respect, Au + 9 shows an anomalous behavior, as it is less likely to evaporate dimers than its two odd-numbered neighbors, Au + 7 and Au + 11. This nonamer anomaly is typical for copper-group cluster ions M + 9 (M = Cu, Ag, Au) and a similar behavior is found in the anionic heptamers M - 7. It is discussed in terms of the well-known electronic shell closing at n e = 8 atomic valence electrons. Received 2 November 2000  相似文献   

15.
Magnetic anisotropy has been measured in multiply twinned, icosahedral cobalt clusters. It is found that the low-temperature magnetization of deposited cluster layers is well defined with the Stoner–Wohlfarth model by averaging over clusters with a range of anisotropy energy. Anisotropy energy calculation based on Néel's pair model shows that the icosahedral structure and the layer-by-layer growth of the clusters induce oscillations of the magnetic anisotropy as a function of the filling of the outer surface of the particle. The magnetization measurement at room temperature indicates a weakly correlated cluster glass, as deduced from the approach to saturation that is well described with 2D random anisotropy model.  相似文献   

16.
High-density, magnetically soft Fe cluster-assembled films were obtained at room temperature by an energetic cluster deposition. Size-monodispersed Fe clusters with the mean cluster size d = 9, 13 and 16 nm were produced using a plasma-gas-condensation technique. Ionized clusters in cluster beam were accelerated electrically and deposited onto the substrate together with neutral clusters from the same cluster source. The morphology, microstructure and magnetic properties of the cluster-assembled films have been studied by an atomic force microscopy, scanning electron microscopy, transmission electron microscopy, and superconducting quantum interference device magnetometer. By increasing the impact energy of the ionized clusters up to 0.6 eV/atom, the Fe cluster-assembled film has a packing fraction of 0.86±0.03, and reveals a soft magnetic behavior. In addition, it is found that oxidization of the cluster-assembled films is remarkably suppressed with the increase in the density of the films.  相似文献   

17.
In this paper, we investigate the global structure of mixed clusters created by coexpansion. To determine the relative dopant sites within the mixed clusters, we take advantage of the strong dependence of the cluster/surface collision dynamics on the incident mixed cluster structure. Using both experiments and molecular dynamic simulations, we show that the coexpansion process leads to the most stable cluster structure for Ar <880> Kr <120> clusters. This structure corresponds to an annealed structure and can be characterized as a nearly homogeneous mixture throughout the cluster with a thin argon coating. Received 4 October 2000  相似文献   

18.
The fragmentation of water clusters, [(H 2 O)n;n = 2-8], have been investigated by using molecular-dynamics simulation method. In the simulations a polarizable-dissociable potential energy function for water has been used. Particular attention has bee paid to investigate the effect of structural properties and cluster size on the fragmentation. Received 27 April 2000 and Received in final form 6 October 2000  相似文献   

19.
We report the recent findings of metal (M) encapsulated clusters of silicon from computer experiments based on ab initio total energy calculations and a cage shrinkage and atom removal approach. Our results show that using a guest atom, it is possible to wrap silicon in fullerenelike (f) structures, as sp2 bonding is not favorable to produce empty cages unlike for carbon. Transition M atoms have a strong bonding with the silicon cage that are responsible for the compact structures. The size and structure of the cage change from 14 to 20 Si atoms depending upon the size and valence of the M atom. Fewer Si atoms lead to relatively open structures. We find cubic, f, Frank-Kasper (FK) polyheral type, decahedral, icosahedral and hexagonal structures for M@Sin with n = 12-16 and several different M atoms. The magic behavior of 15 and 16 atom Si cages is in agreement with experiments. The FK polyhedral cluster, M@Si16 has an exceptionally large density functional gap of about 2.35 eV calculated within the generalized gradient approximation. It is likely to give rise to visible luminescence in these clusters. The cluster-cluster interaction is weak that makes such clusters attractive for cluster assembled materials. Further studies to stabilize Si20 cage with M = Zr, Ba, Sr, and Pb show that in all cases there is a distortion of the f cage. Similar studies on M encapsulated germanium clusters show FK polyhedral and decahedral isomers to be more favorable. Also perfect icosahedral M@Ge12 and M@Sn12 clusters have been obtained with large gaps by doping with divalent M atoms. Recent results of the H interaction with these clusters, hydrogenated silicon fullerenes as well as assemblies of clusters such as nanowires and nanotubes are briefly presented.  相似文献   

20.
The effect of non-local norm-conserving pseudo-potentials on the static and dynamic properties of Nan and Lin cluster with n=6,8 is investigated in the frame of self-consistent LDA calculations with spherically averaged ionic density (SAPS model). A comparison with previous calculations which use local pseudo-potentials as well with uniform averaged non-local pseudo-jellium calculation has been carried out. A better quantitative agreement with experiments has been found in the calculation of the photoresponse cross-section with respect to either simple jellium or pseudo-jellium model, even in very small clusters, where deviations from sphericity are not negligible. Received: 3 March 1998 / Received in final form and Accepted: 2 June 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号