首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
李勇  钱蔚旻  何录武 《力学季刊》2019,40(3):567-576
挤出胀大的数值模拟是非牛顿流体研究中具有挑战性的问题.本文运用格子Boltzmann方法(LBM)分析Oldroyd-B和多阶松弛谱PTT粘弹流体的挤出胀大现象,采用颜色模型模拟出口处粘弹流体和空气的两相流动,通过重新标色获得两种流体的界面,并最终获得胀大的形状.Navier-Stokes方程和本构方程的求解采用双分布函数模型.将胀大的结果与解析解、实验解和单相自由面LBM结果进行了比较,发现格子Boltzmann两相模型结果与解析解和实验结果相吻合,相比于单相模型,收敛速度更快,解的稳定性更高.研究了流道尺寸对胀大率的影响,并对挤出胀大的内在机理进行了分析.  相似文献   

2.
李勇  尤文玉  何录武 《力学季刊》2016,37(2):284-292
将单相格子Boltzmann方法(lattice Boltzmann method, LBM)引入到粘弹流体的瞬态挤出胀大的数值模拟中,建立了基于双分布函数的自由面粘弹性流动格子Boltzmann模型.分析得到的流道中流动速度分布和构型张量结果与理论解十分吻合.对粘弹流体瞬态挤出胀大过程进行了模拟,并分析了运动粘度比和剪切速率对挤出胀大率的影响,得到的胀大率结果与理论分析和其它模拟结果基本一致.表明给出的LBM可以捕捉挤出胀大的瞬态效应.  相似文献   

3.
积分型Maxwell流体挤出胀大的数值模拟   总被引:7,自引:2,他引:5  
应用Luo提出的基于常规有限单元的应力计算方法和范毓润回避奇点的方法,模拟了积分型Maxwell黏弹流体的挤出胀大流动,计算得到了Weissenberg数达1.0下的合理结果。  相似文献   

4.
挤出胀大流动的有限元方法研究   总被引:5,自引:0,他引:5  
本文对Luo-Tanner提出的流线有限元作了重要的改进,提出了沿通过单元高斯点的流线积分本构方程的方法,迴避了速度梯度在单元边界上间断和出口处应力奇点的困难,同时减少了计算量,对比计算表明,采用压力不连续单元来加强不可压缩性限制能使计算质量和收敛性都得到显著的提高,对Maxwell流体的轴对称挤出胀大流动在Weissenberg数1.2下获得了合理的收敛解。  相似文献   

5.
用PSM模型模拟聚合物熔体的长口模挤出胀大   总被引:1,自引:1,他引:1  
 以作者提出的模拟黏弹流体挤出胀大流动的方法为基础,计算了 IUPAC-LDPE熔体经过长圆形口模的挤出胀大. 计算结果同文献的报道 基本一致,表明作者提出的方法适于黏弹聚合物熔体的挤出胀大模拟.  相似文献   

6.
黏弹流体挤出胀大的数值模拟研究进展   总被引:7,自引:0,他引:7  
黄树新  鲁传敬 《力学进展》2004,34(3):379-392
主要介绍了黏弹流体挤出胀大的数值模拟研究进展.给出了黏弹流体挤出胀大的数学模型,回顾了近20多年以来挤出胀大的主要数值模拟研究工作,然后对主要模拟方法的计算过程、方法特点和形成的结果进行了一定的总结.最后提出了作者对挤出胀大研究的一些看法,包括目前研究中存在的问题和相关研究的发展趋势.   相似文献   

7.
应用共转导数型本构方程研究了液晶高分子纺丝挤出过程的拉伸黏度,应用计算机符号运算软件 Maple得出解析表达式,拉伸黏度与拉伸率之间关系(随剪切速率变化)表明存在分岔现象,得出拉伸黏度显著高于相应的剪切黏度,解释了液晶高分子熔体挤出时不发生挤出胀大的物理机制.  相似文献   

8.
采用模拟黏弹流体挤出胀大的方法,计算了IUPAC-LDPE熔体经过4:1轴对称收缩流道的流动.计算的相对涡强度、入口校正和献中的结果基本一致,给出的流场也显示出计算结果是合理的.表明该方法能够适用于用积分型PSM模型表征的黏弹流体在收缩流道内的流动模拟.  相似文献   

9.
 介绍了在所研制的非牛顿流体力学实验装置上,进行的基础性-提高性-研究性实 验. 基础性实验包括爬杆、射流胀大、无管虹吸演示实验;提高性实验包括流变特性、出口 压力测试实验;在以非牛顿流体润滑脂为例的流变特性实验时,发现存在壁滑移,进行了存 在壁滑移时的流变特性和在管道流动中的壁滑移减阻研究性实验.  相似文献   

10.
基于载荷分担理论的渐开线斜齿轮热混合弹流润滑分析   总被引:5,自引:4,他引:1  
沿接触线把斜齿轮分成许多小薄片,每一薄片看成具有当量角速度的直齿轮,根据欧拉方程得到任一接触点处的曲率半径和表面速度.然后基于载荷分担、弹流润滑和粗糙线接触理论,建立了考虑表面粗糙度的斜齿轮传动混合热弹流润滑模型.研究了斜齿轮传动稳态载荷分布下牛顿流体和Carreau流体时的润滑特性.结果表明:牛顿流体和Carreau非牛顿流体模型下,中心油膜厚度、油膜承载比例、油膜温升随时间和接触线的变化规律相同.牛顿流体下的摩擦系数较工程实际偏大.Carreau非牛顿流体模型下摩擦系数和工程实际相符,其随接触线啮合位置的变化规律与油膜厚度正好相反.  相似文献   

11.
Accurate prediction of extrudate (die) swell in polymer melt extrusion is important as this helps in appropriate die design for profile extrusion applications. Extrudate swell prediction has shown significant difficulties due to two key reasons. The first is the appropriate representation of the constitutive behavior of the polymer melt. The second is regarding the simulation of the free surface, which requires special techniques in the traditionally used Eulerian framework. In this paper we propose a method for simulation of extrudate swell using an Arbitrary Lagrangian Eulerian (ALE) technique based finite element formulation. The ALE technique provides advantages of both Lagrangian and Eulerian frameworks by allowing the computational mesh to move in an arbitrary manner, independent of the material motion. In the present method, a fractional-step ALE technique is employed in which the Lagrangian phase of material motion and convection arising out of mesh motion are decoupled. In the first step, the relevant flow and constitutive equations are solved in Lagrangian framework. The simpler representation of polymer constitutive equations in a Lagrangian framework avoids the difficulties associated with convective terms thereby resulting in a robust numerical formulation besides allowing for natural evolution of the free surface with the flow. In the second step, mesh is moved in ALE mode and the associated convection of the variables due to relative motion of the mesh is performed using a Godunov type scheme. While the mesh is fixed in space in the die region, the nodal points of the mesh on the extrudate free surface are allowed to move normal to flow direction with special rules to facilitate the simulation of swell. A differential exponential Phan Thien Tanner (PTT) model is used to represent the constitutive behavior of the melt. Using this method we simulate extrudate swell in planar and axisymmetric extrusion with abrupt contraction ahead of the die exit. This geometry allows the extrudate to have significant memory for shorter die lengths and acts as a good test for swell predictions. We demonstrate that our predictions of extrudate swell match well with reported experimental and numerical simulations.  相似文献   

12.
R. Wolff 《Rheologica Acta》1983,22(4):380-386
The die swell of viscoelastic fluids after leaving a die depends not only on the geometry, temperature effects and the mass flow rate, but also on the specific properties of the media. Among these specific properties is the relaxation spectrum which determines the relaxation of stresses in the fluid. It is this relaxation that produces a die swell. This paper investigates theoretically the manner in which modifications of the relaxation spectrum affect the viscosity curve and the die swell behaviour. In particular it is shown which modifications of the spectrum have a large influence on the die swell and which are relatively unimportant. It is also shown how the time intervals in which the main die swell occurs dependend on the shear rates in the die and which parts of the relaxation spectrum are responsible for the size of the die swell.  相似文献   

13.
An analysis of the flow of a second‐order fluid is presented. Reference values for some variables are defined, and with these a non‐dimensional formulation of the governing equations. From this formulation, three dimensionless numbers appear; one is the Reynolds number, and two numbers that are called the first‐ and second‐dimensionless normal stress (NSD) coefficients. The equations of motion are solved by a finite element method using a commercially available program (Fidap), and the steady state converged solution was used to measure the die swell. The factors that influence die swell and that are studied in this work include: the die geometry for circular cross sectional dies, including tubular, converging, diverging, half‐converging/half‐tubular shapes; fluid characteristics such as Reynolds number and first‐ and second‐DNS coefficients (both positive and negative values); and flow rates, as determined by the maximum velocity in a parabolic velocity profile at the entrance to the die. The results suggest that shear and deformation histories of the fluid directly influence not only swell characteristics, but also convergence characteristics of the numerical simulation. © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
Numerical studies of die swell have until now dealt perimarily with the Maxwell or Oldroyd-B viscoelastic models. However, these models exhibit features that often make them unsuitable for numerical work. Furthermore, they are not realistic representations of actual viscoelastic fluids. In this report a comparison is made between the behaviour of a variety of different viscoelastic models when applied to the die swell problem. A wide range of elongational and shear behaviour is exhibited by the models examined. Both types of behaviour are shown to be important in the die swell problem, and the observed swelling is related to these characteristics of the models.  相似文献   

15.
A method to determine three-dimensional die shapes from extrudate swell and vice versa is presented using a three-dimensional Galerkin finite element method based on a streamlined formulation with the fluid velocities and pressures represented by triquadratic and trilinear basis functions respectively. The three-dimensional streamlined method, an extension of the two-dimensional formulation, uses successive streamsurfaces to form a boundary-conforming co-ordinate system. This produces a fixd, computational domain leaving the spatial location of the elements as unknowns to be determined with the standard primary variables (u, v, w, p). The extrudate produced by a die of a given shape is considered for moderate Reynolds numbers. Finally, the method is extended to address the problem of die design, where a die profile is sought to produce a target extrudate shape.  相似文献   

16.
A theory of extrudate swell for short, intermediate or long dies is presented. In our experiment, we consider that the swelling phenomenon is mainly due to the recoverable elongational strain induced by the converging flow at the die entrance, as well as by recoverable shear strain originating within the die. From these concepts, an equation has been derived for the quantitative prediction of extrudate swell from the elastic material properties such as the entrance pressure drop, the relaxation modulus and the recoverable shear strain. Excellent agreement is found between predicted and measured values of extrudate swell obtained on commercial polystyrene melt, using capillaries of length-to-diameter ratios ranging from 1 to 20 and in a wide range of shear rates.  相似文献   

17.
Both the axisymmetric and the planar Newtonian extrudate‐swell problems are solved using the standard and the singular finite element methods. In the latter method, special elements that incorporate the radial form of the stress singularity are used around the exit of the die. The convergence of each of the two methods with mesh refinement is studied for various values of the Reynolds and the capillary numbers. The numerical results show that the singular finite elements perform well if coarse or moderately refined meshes are used, and appear to be superior to the standard finite elements only when the Reynolds number is low and the surface tension is not large. The standard finite elements perform better as the surface tension or the Reynolds number are increased. This implies that the effect of the stress singularity on the accuracy of the numerical solution in the neighborhood of the die exit becomes less significant when the Reynolds number is high or the surface tension is large. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
In a recent paper, Joseph et al. showed that, for a number of viscoelastic fluids, one can observe the phenomenon of delayed die swell beyond a critical extrusion velocity, or beyond a critical value of the viscoelastic Mach number. Giesekus had also observed that delayed die swell is a critical phenomenon.In the present paper, we find a set of material and flow parameters under which it is possible to simulate delayed die swell. For the viscoelastic flow calculation, we use the finite element algorithm with sub-elements for the stresses and streamline upwinding in the discretized constitutive equations. For the free surface, we use an implicit technique which allows us to implement Newton's method for solving the non-linear system of equations. The fluid is Oldroyd-B which, in the present problem, is a singular perturbation of the Maxwell fluid. The results show very little sensitivity to the size of the retardation time. We also show delayed die swell for a Giesekus fluid.This paper is dedicated to Professor Hanswalter Giesekus on the occasion of his retirement as Editor of Rheologica Acta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号