首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
While the reaction of [PW(11)O(39)](7-) with first row transition-metal ions M(n+) under usual bench conditions only leads to monosubstituted {PW(11)O(39)M(H(2)O)} anions, we have shown that the use of this precursor under hydrothermal conditions allows the isolation of a family of novel polynuclear discrete magnetic polyoxometalates (POMs). The hybrid asymmetric [Fe(II)(bpy)(3)][PW(11)O(39)Fe(2) (III)(OH)(bpy)(2)]12 H(2)O (bpy=bipyridine) complex (1) contains the dinuclear {Fe(micro-O(W))(micro-OH)Fe} core in which one iron atom is coordinated to a monovacant POM, while the other is coordinated to two bipyridine ligands. Magnetic measurements indicate that the Fe(III) centers in complex 1 are weakly antiferromagnetically coupled (J=-11.2 cm(-1), H=-JS(1)S(2)) compared to other {Fe(micro-O)(micro-OH)Fe} systems. This is due to the long distances between the iron center embedded in the POM and the oxygen atom of the POM bridging the two magnetic centers, but also, as shown by DFT calculations, to the important mixing of bridging oxygen orbitals with orbitals of the POM tungsten atoms. The complexes [Hdmbpy](2)[Fe(II)(dmbpy)(3)](2)[(PW(11)O(39))(2)Fe(4) (III)O(2)(dmbpy)(4)]14 H(2)O (2) (dmbpy=5,5'-dimethyl-2,2'-bipyridine) and H(2)[Fe(II)(dmbpy)(3)](2)[(PW(11)O(39))(2)Fe(4) (III)O(2)(dmbpy)(4)]10 H(2)O (3) represent the first butterfly-like POM complexes. In these species, a tetranuclear Fe(III) complex is sandwiched between two lacunary polyoxotungstates that are pentacoordinated to two Fe(III) cations, the remaining paramagnetic centers each being coordinated to two dmbpy ligands. The best fit of the chi(M)T=f(T) curve leads to J(wb)=-59.6 cm(-1) and J(bb)=-10.2 cm(-1) (H=-J(wb)(S(1)S(2)+S(1)S(2*)+S(1*)S(2)+S(1*)S(2*))-J(bb)(S(2)S(2*))). While the J(bb) value is within the range of related exchange parameters previously reported for non-POM butterfly systems, the J(wb) constant is significantly lower. As for complex 1, this can be justified considering Fe(w)--O distances. Finally, in the absence of a coordinating ligand, the dimeric complex [N(CH(3))(4)](10)[(PW(11)O(39)Fe(III))(2)O]12 H(2)O (4) has been isolated. In this complex, the two single oxo-bridged Fe(III) centers are very strongly antiferromagnetically coupled (J=-211.7 cm(-1), H=-JS(1)S(2)). The electrochemical behavior of compound 1 both in dimethyl sulfoxide (DMSO) and in the solid state is also presented, while the electrochemical properties of complex 2, which is insoluble in common solvents, have been studied in the solid state.  相似文献   

3.
Monoclinic and orthorhombic Fe(2)(MoO(4))(3) microsized particles with complex 3D architectures have been selectively prepared by a template-free hydrothermal process. The pH value, reaction time, temperature, and molybdenian source have crucial influence on the phase formation, shape evolution, and microstructures. Monoclinic Fe(2)(MoO(4))(3) particles obtained at pH 1 and pH 1.65 display ferromagnetic ordering at 10.4 K and 10.5 K, respectively, and the ferromagnetic component is determined to be 0.0458 mu(B) and 0.0349 mu(B) per Fe-ion at 10 K, respectively. For orthorhombic beta-Fe(2)(MoO(4))(3), antiferromagnetic ordering was observed about 12 K. At higher temperatures, beta-Fe(2)(MoO(4))(3) began to follow the Curie-Weiss law with theta=-70 K. Such 3D architectures of monoclinic and orthorhombic beta-Fe(2)(MoO(4))(3) microparticles with unique shapes and structural characteristics may find applications as catalysts and as well as in other fields.  相似文献   

4.
Ternary bismuth oxyhalide crystalline nanobelts (such as Bi24O31Br10, Bi3O4Br, Bi12O17Br2, BiOCl, and Bi24O31Cl10) and nanotubes (such as Bi24O31Br10) have been synthesized by using convenient hydrothermal methods. The composition and morphologies of the bismuth oxyhalides could be controlled by adjusting some growth parameters, including reaction pH, time, and temperature. All the nanostructures were characterized by using various methods including X-ray diffraction, transmission electron microscopy, high-resolution TEM, electron diffraction, and energy-dispersive X-ray analysis. The possible reaction mechanism and growth of the crystals are discussed based on the experimental results.  相似文献   

5.
6.
7.
8.
Six new divalent metal selenites have been synthesized by hydro-/solvothermal methods which leads to the incorporation of the organic template as a cation or a ligand. The structure of [H(2)pip][Cu(SeO(3))(2)] (1) (pip=piperazine) features 1D anionic chains of [Cu(SeO(3))(2)](2-) which are cross-linked by the template cations through hydrogen bonds into a 2D layer. In [Cu(C(3)H(4)N(2))(SeO(3))] (2) the organic template is coordinated to the copper(II) ion of the inorganic Cu(SeO(3)) layer. The isostructural compounds [H(2)en][M(HSeO(3))(2)Cl(2)] (en=ethylenediamine; M=Cu (3), Co (4)) contain layers of [MCl(2)(HSeO(3))(2)](2-) units (M=Cu, Co), which are cross-linked by the template cations via hydrogen bonds into a 3D network. The structure of [H(2)en][Cu(2)(SeO(3))(2)(HSeO(3))](2)H(2)O (5), consists of a pillared layered architecture in which the Cu(SeO(3)) layers are further interconnected by bridging hydrogen selenite groups (the pillar). The compound [H(2)pip][Cu(2)(Se(2)O(5))(3)] (6), which crystallizes as a 3D open framework represents the first organically templated metal diselenite. These new compounds are thermally stable up to at least 170 degrees C. All of the compounds exhibit fairly strong antiferromagnetic interactions. More interestingly, compounds 3 and 4 behave as a weak ferromagnets below the critical temperatures of T(c)=12 and 8 K, respectively, and both of them exhibit spin-flop phase transitions around 800+/-100 Oe.  相似文献   

9.
[Mn(3)(OH)(2)(SO(4))(2)(H(2)O)(2)] and its deuterated analogue were synthesized by a hydrothermal technique and characterized by differential thermal analysis, thermogravimetric analysis, and IR spectroscopy. Its nuclear structure, determined by single-crystal X-ray analysis and Rietveld analysis of neutron powder-diffraction data, consists of a 3D network of chains of edge-sharing Mn(1)O(6), running along the c axis, connected by the apices of Mn(2)O(6) and SO(4) units. It is isostructural to the nickel analogue. Determination of the magnetic structure and measurements of magnetization and heat capacity indicate the coexistence of both magnetic long-range ordering (LRO) and short-range ordering (SRO) below a Néel temperature of 26 K, while the SRO is retained at higher temperatures. The moments of the two independent Mn atoms lie in the bc plane, and that of Mn(1) rotates continuously by 54 degrees towards the c axis on decreasing the temperature from 25 to 1.4 K. While the SRO may be associated with frustration of the moments within a Mn(3) trimer, the LRO is achieved by antiparallel alignment of the four symmetry-related trimers within the magnetic unit cell. A spin-flop field, measured by dc and ac magnetization on a SQUID, is observed at 15 kOe.  相似文献   

10.
The fundamental understanding of the relationship between crystal structure and the dynamic processes of anisotropic growth on the nanoscale, and exploration of the key factors governing the evolution of physical properties in functional nanomaterials, have become two of the most urgent and challenging issues in the fabrication and exploitation of functional nanomaterials with designed properties and the development of nanoscale devices. Herein, we show how structural and kinetic factors govern the tendency for anisotropic growth of such materials under hydrothermal conditions, and how the crystal structure and morphology influence the optical properties of Ln3+-doped nanocrystals. The synthesis of phase-pure and single-crystalline monoclinic, hexagonal, and tetragonal one-dimensional LnPO4 nanostructures of different aspect ratios by means of kinetically controlled hydrothermal growth processes is demonstrated. It is shown that the tendency for anisotropic growth under hydrothermal conditions can be enhanced simply by modifying the chemical potentials of species in the reaction solution through the use of carefully selected chelating ligands. A systematic study of the photoluminescence of various Eu3+-doped lanthanide phosphates has revealed that the optical properties of these nanophosphors are strongly dependent on their crystal structures and morphologies.  相似文献   

11.
The large-scale synthesis of single-crystal K(x)WO(3) tungsten bronze nanowires has been successfully realized by a hydrothermal method under mild conditions. Uniform K(0.33)WO(3) nanowires with diameters of 5-25 nm and lengths of up to several micrometers are obtained. It is found that the morphology and crystallographic forms of the final products are strongly dependent on the sulfate and citric acid, which may act as structure-directing and soft-reducing agent, respectively. Some other influential factors on the growth of tungsten bronze nanowires, such as temperature and reaction time, are also discussed. It is worth noting that other alkali metal tungsten bronzes such as (NH(4))(x)WO(3), Rb(x)WO(3), and Cs(x)WO(3) could also be selectively synthesized by a similar route. Thus, this novel and efficient method could provide a potential mild route to selectively synthesize various tungsten bronze on-dimensional nanomaterials.  相似文献   

12.
Carboxylate-bridged complexes of transition metals, M(II)=Mn(II), Fe(II), Co(II), Ni(II), Zn(II), were synthesised by reaction of M(II) salts with dl-malate and L-malate under hydrothermal conditions. These complexes form four series of compounds, which have been fully characterised structurally, thermally and magnetically. The crystal structures of the new chiral compounds, [Mn(L-mal)(H(2)O)] (1), [Fe(L-mal)(H(2)O)] (2), [Co(L-mal)(H(2)O)] (3) and [Zn(L-mal)(H(2)O)] (4) as well as those of the bimetallic analogues [Mn(0.63)Co(0.37)(L-mal)(H(2)O)] (5) and [Mn(0.79)Ni(0.21)(L-mal)(H(2)O)] (6) have been solved by single-crystal X-ray diffraction. The six L-malate monohydrates crystallise in the chiral space group P2(1)2(1)2(1) and consist in a three-dimensional network of metal(II) centres in octahedral sites formed by oxygen atoms. These structures were compared to those of the chiral trihydrate compounds [Co(L-mal)(H(2)O)]2 H(2)O (7), [Ni(L-mal)(H(2)O)]2 H(2)O (8) and [Co(0.52)Ni(0.48)(L-mal)(H(2)O)]2 H(2)O (9), which exhibit helical chains of M(II) centres, and those of dl-malate dihydrates [Co(dl-mal)(H(2)O)]H(2)O (10) and [Ni(dl-mal)(H(2)O)H(2)O (11) and trihydrate [Mn(L-mal)(H(2)O)]2 H(2)O (12) highlighting the great flexibility of the coordination by the malate ligand. UV/Vis spectroscopic results are consistent with octahedral coordination geometry of high-spin transition-metal centres. Extensive magnetic characterisation of each homologous series indicates rather weak coupling interaction between paramagnetic centres linked through carboxylate bridges. Curie-like paramagnetic, antiferromagnetic, ferromagnetic or weak ferromagnetic behaviour is observed and discussed on the basis of the structural features. The bimetallic compounds 5 and 6 represent new examples of chiral magnets.  相似文献   

13.
通过水热法合成了三维(3D)网状金属有机框架物[Pr(NTA)(H2O)]n(NTA=nitrilotriacetic acid);利用元素分析、红外光谱分析、X射线单晶衍射等表征了产物的结构,利用热重分析和示差热重分析评价了其热稳定性,并测定了其磁性能.结果表明,目标配合物的Pr(Ⅲ)采取九配位模式(N1O8)形成三帽三角棱柱几何构型,配位聚合物通过O-C-O链组装成高度有序的3D结构.此外,合成的配合物具有较高的热稳定性,并因(O2C-C-C-CO2)2桥联而显示反铁磁性.  相似文献   

14.
Various nanostructured films of copper and silver tellurides were hydrothermally grown on the corresponding metal substrates through reactions between metal foils and tellurium powder in different media. Interesting morphologies including nanowires, nanorods, nanobelts, nanosheets, and hierarchical dendrites were obtained. The nanostructured films were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM). A growth mechanism was proposed based on the characterization results. This study provides a low-temperature, solution-phase approach to grow low-dimensional, nanostructured metal tellurides with controllable morphologies.  相似文献   

15.
16.
17.
Three novel extended vanadogermanates, {[(en)(2)Cd(2)Ge(8)V(12)O(40)(OH)(8)(H(2)O)][Cd(en)(2)](2)}·6H(2)O (1), {[Zn(2)(dap)(3)][Zn(dap)](2)Ge(6)V(15)O(48)(H(2)O)}[Zn(dap)(2)(H(2)O)](2)·3H(2)O (2), and {[Cd(3)(μ-dien)(2)(Hdien)(2)(H(2)O)(2)]Ge(4)V(16)O(42)(OH)(4)(H(2)O)}·2H(2)O (3; en=ethylenediamine, dap=1,2-diaminopropane, dien=diethylenetriamine), have been hydrothermally synthesized and structurally characterized by elemental analysis, IR spectroscopy, powder XRD, thermogravimetric analysis, and single-crystal XRD. Their Ge-V-O cluster anions are derived from the V(18)O(42) cluster shell by replacing VO(5) square pyramids with Ge(2)O(7) groups. Compound 1 exhibits a 1D sinusoidal chain built up from rare inorganic-organic hybrid dicadmium-substituted vanadogermanate {[Cd(en)](2)V(12)O(40)(GeOH)(8)(H(2)O)} clusters and [Cd(en)(2)] complexes. Compound 2 is the first example of a 2D network based on linkage of the unusual {Ge(6)V(15)O(48)(H(2)O)} clusters and two types of Zn complex fragments. Compound 3 is an unprecedented 3D framework built by {Ge(4)V(16)O(42)(OH)(4)(H(2)O)} clusters and rare trinuclear bridging complex cations [Cd(3)(μ-dien)(2)(Hdien)(2)(H(2)O)(2)](8+). Magnetic measurements illustrate that both 1 and 2 have antiferromagnetic exchange interactions between metal centers, whereas 3 exhibits ferrimagnetic behavior, which is rare in polyoxovanadate complexes.  相似文献   

18.
The chloro compound of 3-hydroxy-2-quinoxalinecarboxylic acid with nickel(II) has been prepared in ethanolic solution from which a solid compound was isolated. Spectral and magnetic measurements show that the nickel ions are in an octahedral environment. Thermogravimetry, differential thermal analysis and electrical conductivity data are reported for 3-hydroxy-2-quinoxalinecarboxylic acid and its nickel complex. The conductivity measurements indicate that electron/hole traps are emptied during heating of the complex but repopulation occurs in about 24 h at room temperature.  相似文献   

19.
The hydrothermal reactions of trivacant Keggin A-alpha-XW(9)O(34) polyoxoanions (X=P(V)/Si(IV)) with transition-metal ions (Ni(II)/Cu(II)/Fe(II)) in the presence of amines result in eight novel high-nuclear transition-metal-substituted polyoxotungstates [{Ni(7)(mu(3)-OH)(3)O(2)(dap)(3)(H(2)O)(6)}(B-alpha-PW(9)O(34))][{Ni(6)(mu(3)-OH)(3)(dap)(3)(H(2)O)(6)}(B-alpha-PW(9)O(34))][Ni(dap)(2)(H(2)O)(2)]4.5 H(2)O (1), [Cu(dap)(H(2)O)(3)](2)[{Cu(8)(dap)(4)(H(2)O)(2)}(B-alpha-SiW(9)O(34))(2)]6 H(2)O (2), (enH(2))(3)H(15)[{Fe(II) (1.5)Fe(III) (12)(mu(3)-OH)(12)(mu(4)-PO(4))(4)}(B-alpha-PW(9)O(34))(4)]ca.130 H(2)O (3), [{Cu(6)(mu(3)-OH)(3)(en)(3) (H(2)O)(3)}(B-alpha-PW(9)O(34))]7 H(2)O (4), [{Ni(6)(mu(3)-OH)(3)(en)(3)(H(2)O)(6)}(B-alpha-PW(9)O(34))]7 H(2)O (5), [{Ni(6)(mu(3)-OH)(3)(en)(2)(H(2)O)(8)}(B-alpha-PW(9)O(34))]7 H(2)O (6), [{Ni(6)(mu(3)-OH)(3)(dap)(2)(H(2)O)(8)}(B-alpha-PW(9)O(34))] 7 H(2)O (7), and [{Ni(6)(mu(3)-OH)(3)(en)(3)(H(2)O)(6)}(B-alpha-SiW(9)O(34))][Ni(0.5)(en)] 3.5 H(2)O (8) (en=ethylenediamine, dap=1,2-diaminopropane). These compounds have been structurally characterized by elemental analyses, IR spectra, diffuse reflectance spectra, thermogravimatric analysis, and X-ray crystallography. The double-cluster complex of phosphotungstate 1 simultaneously contains hepta- and hexa-Ni(II)-substituted trivacant Keggin units [{Ni(7)(mu(3)-OH)(3)O(2)(dap)(3)(H(2)O)(6)}(B-alpha-PW(9)O(34))](2-) and [{Ni(6)(mu(3)-OH)(3)(dap)(3)(H(2)O)(6)}(B-alpha-PW(9)O(34))]. The dimeric silicotungstate 2 is built up from two trivacant Keggin [B-alpha-SiW(9)O(34)](10-) fragments linked by an octa-Cu(II) cluster. The main skeleton of 3 is a tetrameric cluster constructed from four tri-Fe(III)-substituted [Fe(III) (3)(mu(3)-OH)(3)(B-alpha-PW(9) O(34))](3-) Keggin units linked by a central Fe(II) (4)O(4) cubane core and four mu(4)-PO(4) bridges. Complex 4 is an unprecedented three-dimensional extended architecture with hexagonal channels built by hexa-Cu(II) clusters and trivacant Keggin [B-alpha-PW(9)O(34)](9-) fragments. The common feature of 5-8 is that they contain a B-alpha-isomeric trivacant Keggin fragment capped by a hexa-Ni(II) cluster, very similar to the hexa-Ni(II)-substituted trivacant Keggin unit in 1. Magnetic measurements illustrate that 1, 2, and 5 have ferromagnetic couplings within the magnetic metal centers, whereas 3 and 4 reveal the antiferromagnetic exchange interactions within the magnetic metal centers. Moreover, the magnetic behavior of 4 and 5 have been theoretically simulated by the MAGPACK magnetic program package.  相似文献   

20.
An anhydrous orthophosphate, K3Eu5(PO4)6 (tripotassium pentaeuropium hexaphosphate), has been prepared by a high‐temperature solid‐state reaction combined with hydrothermal synthesis, and its crystal structure was determined by single‐crystal X‐ray diffraction analysis (SC‐XRD). The results show that the compound crystallizes in the monoclinic space group C2/c and the structure features a three‐dimensional framework of [Eu5(PO4)6], with the tunnel filled by K+ ions. The IR spectrum, UV–Vis spectrum and luminescence properties of polycrystalline samples of K3Eu5(PO4)6, annealed at temperatures of 650, 700, 750, 800 and 850 °C, were investigated. Although with a full Eu3+ concentration (9.96 × 1021 ions cm?3), the self‐activated phosphor K3Eu5(PO4)6 shows s strong luminescence emission intensity with a quantum yield of 37%. Under near‐UV light excitation (393 nm), the series of samples shows the characteristic emissions of Eu3+ ions in the visible region from 575 to 715 nm. The sample sintered at 800 °C gives the strongest emission and its lifetime sintered at 800 °C (1.88 ms) is also the longest of all.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号