首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Deprotonation of 1-[(1S,3R)-2,2-dimethyl-3-(2-methoxymethyloxyethyl)cyclopropyl]-2-propanone with lithium diisopropylamide in THF at -78°C and subsequent treatment of the resulting enolate with Me3SiCl yielded mainly the corresponding terminal silyl enol ether. The condensation of intermediate enolate with benzaldehyde regioselectively afforded a mixture of the corresponding aldol and its dehydration product. The reactions of the title ketone with NBS, as well as of the silyl enol ethers derived therefrom with I2, led to formation of mixtures of products via opening of the cyclopropane ring.  相似文献   

3.
A series of nine TADDOLs (=α,α,α′,α′‐tetraaryl‐1,3‐dioxolane‐4,5‐dimethanols) 1a – 1i , have been tested as proton sources for the enantioselective protonation of the Li‐enolate of 2‐methyl‐1‐tetralone (=3,4‐dihydro‐2‐methylnaphthalen‐1(2H)‐one). The enolate was generated directly from the ketone (with LiN(i‐Pr)2 (LDA)/MeLi) or from the enol acetate (with 2 MeLi) or from the silyl enol ether (with MeLi) in CH2Cl2 or Et2O as the solvent (Scheme). The Li‐enolate (associated with LiBr/LDA, or LiBr alone) was combined with 1.5 – 3.0 equiv. of the TADDOL at −78° by addition of the latter or by inverse addition. 2‐Methyl‐1‐tetralone of (S)‐configuration is formed (≤80% yield) with up to 99.5% selectivity if and only if (R,R)‐TADDOLs ( 1d , e , g ) with naphthalen‐1‐yl groups on the diarylmethanol unit are employed (Table). The reactions were carried out on the 0.1‐ to 1.0‐mM scale. The selectivity is subject to non‐linear effects (NLE) when an enantiomerically enriched TADDOL 1d is used (Fig. 1). The performance of TADDOLs bearing naphthalen‐1‐yl groups is discussed in terms of their peculiar structures (Fig. 2).  相似文献   

4.
Glycosylation of decan‐1‐ol ( 2 ), (±)‐decan‐2‐ol ( 3 ), and (±)‐methyl 3‐hydroxydecanoate ( 4 ) with L rhamnose peracetate 5 to produce rhamnosides (=6‐deoxymannosides) 6, 7 , and 8 in the presence of Lewis acids BF3?Et2O, Sc(OTf)3, InBr3, and Bi(OTf)3 was studied (Table 1). While the strong Lewis acids BF3?Et2O and Sc(OTf)3 were effective as glycosylation promoters, they had to be used in excess; however, glycosylation required careful control of reaction times and temperatures, and these Lewis acids produced impurities in addition to the desired glycosides. Enantiomerically pure rhamnosides (R)‐ 1 and (S)‐ 1 (Fig.) were obtained from L rhamnose peracetate 5 and (±)‐benzyl 3‐hydroxydecanoate ( 9 ) via the diastereoisomeric rhamnosides 10 (Table 2; Scheme 3). The much weaker Lewis acids InBr3 and Bi(OTfl)3 produced purer products in high yield under a wider range of conditions (higher temperatures), and were effective glycosylation promoters even when used catalytically (<10% catalyst; Table 2). We refer to these Lewis acids as ‘minimally competent Lewis acids’ (cf. Scheme 4).  相似文献   

5.
The reactions of the enolizable thioketone (1R,4R)‐thiocamphor (=(1R,4R)‐1,7,7‐trimethylbicyclo[2.2.1]heptane‐2‐thione; 1 ) with (S)‐2‐methyloxirane ( 2 ) in the presence of a Lewis acid such as SnCl4 or SiO2 in anhydrous CH2Cl2 led to two diastereoisomeric spirocyclic 1,3‐oxathiolanes 3 and 4 with the Me group at C(5′), as well as the isomeric β‐hydroxy thioether 5 (Scheme 2). The analogous reactions of 1 with (RS)‐, (R)‐, and (S)‐2‐phenyloxirane ( 7 ) yielded two isomeric spirocyclic 1,3‐oxathiolanes 8 and 9 with Ph at C(4′), an additional isomer 13 bearing the Ph group at C(5′), and three isomeric β‐hydroxy thioethers 10, 11 , and 12 (Scheme 4). In the presence of HCl, the β‐hydroxy thioethers 5, 10, 11 , and 12 isomerized to the corresponding 1,3‐oxathiolanes 3 and 4 (Scheme 3), and 8, 9 , and 13 , respectively (Scheme 5). Under similar conditions, an epimerization of 3, 8 , and 9 occurred to yield the corresponding diastereoisomers 4, 14 , and 15 , respectively (Schemes 3 and 6). The structures of 9 and 15 were confirmed by X‐ray crystallography (Figs. 1 and 2). These results show that the Lewis acid‐catalyzed addition of oxiranes to enolizable thioketones proceeds with high regio‐ and stereoselectivity via an Sn 2‐type mechanism.  相似文献   

6.
α,α,α′,α′-Tetraaryl-1,3-dioxolane-4,5-dimethanols (TADDOLs), containing styryl groups either at C(2) of the heterocyclic ring or in the α-position, were prepared in the usual way ( 18–22, 24, 25 ). These compounds were copolymerized with styrene and divinylbenzene in a suspension, yielding polymers ( 33–40 , Scheme 3) as beads with a rather uniform particle-size distribution (150–45 μm), swellable in common organic solvents. HOCH2- and BrCH2-substituted TADDOLs were also prepared and used for attachement to Merrifield resin or to dendritic molecules ( 23, 26–32 ). The TADDOL moieties in these materials are accessible to form Ti (and Al) complexes (Scheme 4) which can be used as polymer- or dendrimer-bound reagents (stoichiometric) or Lewis acids (catalytic). The reactions studied with these new chiral auxiliaries are: enantioselective nucleophilic additions to aldehydes (of R2Zn and RTi(OCHMe2)3; Scheme 5, Table 1) and to ketones (of LiAlH4, Table 2); enantioselective ring opening of meso-anhydrides (Scheme 6); [4+2] and [3+2] cycloadditions of 3-crotonyl-1,3-oxazolidin-2-one to cyclopentadiene and to (Z)-N-benzylidenephenylamine N-oxide ( → 48, 49 , Scheme 7, Tables 3, 4, and Fig. 5). The enantioselectivities reached with most of the polymer-bound or dendritic TADDOL ligands were comparable or identical to those observed with the soluble analogs. The activity of the polymer-bound Lewis acids was only slightly reduced as compared with that encountered under homogeneous conditions. Multiple use of the beads (up to 10 times), without decreased performance, has been demonstrated (Figs. 3 and 4). The poorer selectivity in the Diels-Alder reaction (Scheme 7a), induced by the polymer-bound Cl2Ti-TADDOLate as compared to the soluble one, is taken as an opportunity to discuss the mechanism of this Lewis-acid catalysis, and to propose a cationic, trigonal-bipyramidal complex as the catalytically active species (Fig. 6). It is suggested that similar cations may be involved in other Ti-TADDOLate-mediated reactions as well.  相似文献   

7.
The regio‐ and stereoselective, Lewis acid catalyzed Strecker reaction between Me3SiCN and different aldimines incorporating a 2,3,4,6‐tetrakis‐O‐pivaloyl‐D ‐glucopyranosyl (Piv4Glc) chiral auxiliary has been worked out. Depending on the conditions used, high yields (up to 95%) and good diastereoselectivities (de > 86%) were achieved under mild conditions (Table 1), especially with CuBr ? Me2S as catalyst. Our protocol allows the ready preparation of asymmetric β,γ‐unsaturated α‐amino acids such as (R)‐2‐amino‐4‐phenylbut‐3‐enoic acid ( 13 ; Scheme 2) and congeners thereof.  相似文献   

8.
It is shown that carboxylic acids, in the presence of Bu3N and 2-chloro-1-methylpyridinium iodide in toluene or CH2Cl2, react with [(alkoxycarbonyl)methylidene]phosphoranes to yield the corresponding esters of allene carboxylic acids (ef. Scheme 1 and Table 1). This procedure can also be applied to cinnamic acids which form [3]cumulenecarboxylates in low yield (Table 3). Under the same conditions 4-methyl-2-pentynoic acid can be transformed into (2E)-4-chloro-2,6-dimethylhepta-2,4,5-trienoate (Scheme 4).  相似文献   

9.
A straightforward synthesis of (2S)-[3,3-2H2]-proline 1c and (2S,3R)- and (2S,3S)-[3-2H1]-proline, 1b and 1a, respectively, has been devised. The key step of the route to the latter compounds involves highly stereoselective hydrolysis of the silyl enol ethers 3 and 3a, respectively, with protonation (deuteriation) from the re-face of the silyl enol ether.  相似文献   

10.
The reaction of the enolizable thioketone (1R,4R)‐thiocamphor (= (1R,4R)‐1,7,7‐trimethylbicyclo[2.2.1]heptane‐2‐thione; 1 ) with (R)‐2‐vinyloxirane ( 2 ) in the presence of a Lewis acid such as SnCl4 or SiO2 in anhydrous CH2Cl2 gave the spirocyclic 1,3‐oxathiolane 3 with the vinyl group at C(4′), as well as the isomeric enesulfanyl alcohol 4 . In the case of SnCl4, an allylic alcohol 5 was obtained in low yield in addition to 3 and 4 (Scheme 2). Repetition of the reaction in the presence of ZnCl2 yielded two diastereoisomeric 4‐vinyl‐1,3‐oxathiolanes 3 and 7 together with an alcohol 4 , and a ‘1 : 2 adduct’ 8 (Scheme 3). The reaction of 1 and 2 in the presence of NaH afforded regioselectively two enesulfanyl alcohols 4 and 9 , which, in CDCl3, cyclized smoothly to give the corresponding spirocyclic 1,3‐oxathiolanes 3, 10 , and 11 , respectively (Scheme 4). In the presence of HCl, epimerization of 3 and 10 occurred to yield the corresponding epimers 7 and 11 , respectively (Scheme 5). The thio‐Claisen rearrangement of 4 in boiling mesitylene led to the allylic alcohol 12 , and the analogous [3,3]‐sigmatropic rearrangement of the intermediate xanthate 13 , which was formed by treatment of the allylic alcohol 9 with CS2 and MeI under basic conditions, occurred already at room temperature to give the dithiocarbonate 14 (Schemes 6 and 7). The presented results show that the Lewis acid‐catalyzed as well as the NaH‐induced addition of (R)‐vinyloxirane ( 2 ) to the enolizable thiocamphor ( 1 ) proceeds stereoselectively via an SN2‐type mechanism, but with different regioselectivity.  相似文献   

11.
The chloro alcohols 4 – 6 derived from TADDOLs (=α,α,α′,α′‐tetraaryl‐1,3‐dioxolan‐4,5‐dimethanols) are used to prepare corresponding sulfanyl alcohols, ethers, and amines (Scheme 1 and Table 1). The dithiol analog of TADDOL and derivatives thereof, 45 – 49 , were also synthesized. The crystal structures of 16 representatives of this series of compounds are reported (Figs. 13 and Scheme 2). The thiols were employed in Cu‐catalyzed enantioselective conjugate additions of Grignard reagents to cyclic enones, with cycloheptenone giving the best results (er up to 94 : 6). The enantioselectivity reverses from Si‐addition with the sulfanyl alcohol to Re‐addition with the alkoxy or dimethylamino thiols (Table 4). CuI‐Thiolates, 50 – 53 , could be isolated in up to 84% yield (Scheme 2) and were shown to have tetranuclear structures in the gas phase (by ESI‐MS), in solution (CH2Cl2, THF; by vapor‐pressure osmometry and by NMR pulsed‐gradient diffusion measurements; Table 5), and in the solid state (X‐ray crystal structures in Scheme 2). The Cu complex 50 of the sulfanyl alcohol is stable in air and in the presence of weak aqueous acid, and it is a highly active catalyst (0.5 mol‐%) for the 1,4‐additions, leading to the same enantio‐ and regioselectivities observed with the in situ generated catalyst (6.5 mol‐%; Scheme 3). Since the reaction mixtures contain additional metal salts (MgX2, LiX) it is not possible at this stage, to propose a mechanistic model for the conjugate additions.  相似文献   

12.
The complexes [TiCl2{(R,R)‐TADDOLato}(DME)]⋅MeCN ( 3 ), and [TiCl2{(R,R)‐1‐Nph‐TADDOLato}(MeCN)2]⋅CH2Cl2 ( 4b ) (DME=1,2‐dimethoxyethane; (R,R)‐TADDOLato=(4R,5R)‐2,2‐dimethyl‐α,α,α′,α′‐tetraphenyl‐1,3‐dioxolane‐4,5‐dimethanolato(2−)‐κO,κO′; (R,R)‐1‐Nph‐TADDOLato=(4R,5R)‐2,2‐dimethyl‐α,α,α′,α′‐tetra(naphthalen‐1‐yl)‐1,3‐dioxolane‐4,5‐dimethanolato(2−)‐κO,κO′) were prepared and isolated in high yield as stable crystalline materials (Scheme 1). They constitute ideally suited and easy‐to‐handle catalyst precursors for a large number of Ti‐catalyzed asymmetric reactions, for which they have been previously generated in situ. The X‐ray crystal structures of 3 and 4b show a distorted octahedral geometry around Ti with the chloro ligands in mutual trans positions (Figs. 5 and 6). The new chiral diols α‐(1S,3R)‐3‐hydroxy‐2,2,3‐trimethylcyclopentyl]‐α‐phenylbenzenemethanol ( 13a ), derived from camphoric acid ( 5 ), and (M)‐6,6′‐dimethyl‐α,α,α′,α′‐tetraphenyl[1,1′‐biphenyl]‐2,2′‐dimethanol ( 15 ) were prepared (Schemes 3 and 4). These new ligands are able to form mononuclear complexes with the TiIVCl2 fragment. The corresponding complex 14 derived from 13a was characterized by X‐ray as a mixed THF/MeCN adduct.  相似文献   

13.
A highly efficient enantioselective [2+2] cycloaddition between alkynones and cyclic enol silyl ethers was developed by using a chiral N,N′‐dioxide‐zinc(II) complex as a catalyst. This method functions well for a variety of terminal alkynes as well as cyclic enol silyl ethers, with good to excellent enantioselectivity (up to 97 % ee). This is also the first successful example for the catalytic enantioselective [2+2] cycloaddition of internal alkynes with cyclic enol silyl ethers to give fully substituted cyclobutenes. Meanwhile, the desired cyclobutene product can easily be transformed into fused cyclobutane derivatives.  相似文献   

14.
Enantioselective total syntheses of the four stereoisomers of the fragrance Magnolione® ( 1 ) are described. Key step is a Pd‐catalyzed asymmetric allylic alkylation displaying enantiomer excess of ≥ 99% (Scheme 2). The resultant methyl α‐acetyl‐2‐pentylcyclopent‐2‐ene‐1‐acetate) was subjected to demethoxycarbonylation, carbonyl protection by acetalization, and epoxidation (Schemes 2 and 3). Subsequent Lewis acid catalyzed epoxide/ ketone rearrangement followed by deprotection gave cis/trans mixtures of Magnolione® in 28% overall yield (Scheme 3). The cis/trans isomers were separated by prep. HPLC, and fragrance properties as well as odor threshold values were determined (Table 2).  相似文献   

15.
An efficient formal [6+2] cycloaddition reaction of a new six-carbon unit with enol silyl ether was developed on the basis of a dicobalt hexacarbonyl propargyl cation species. Under the influence of EtAlCl2, 6-benzoyloxy-2-(triisopropylsilyloxy)-1-hexen-4-yne-dicobalthexacarbonyl reacted with enol triisopropylsilyl ethers to yield 7-(triisopropylsilyloxy)-3-cyclooctyn-1-one-dicobalthexacarbonyl derivatives in good yield. The reactions with cyclic enol silyl ethers as well as acyclic enol silyl ethers exhibited remarkably high diastereoselectivity.  相似文献   

16.
Oxidations of 5α‐hydroxy‐B‐norcholestan‐3β‐yl acetate ( 8 ) with Pb(OAc)4 under thermal or photolytic conditions or in the presence of iodine afforded only complex mixtures of compounds. However, the HgO/I2 version of the hypoiodite reaction gave as the primary products the stereoisomeric (Z)‐ and (E)‐1(10)‐unsaturated 5,10‐seco B‐nor‐derivatives 10 and 11 , and the stereoisomeric (5R,10R)‐ and (5S,10S)‐acetals 14 and 15 (Scheme 4). Further reaction of these compounds under conditions of their formation afforded, in addition, the A‐nor 1,5‐cyclization products 13 and 16 (from 10 ) and 12 (from 11 ) (see also Scheme 6) and the 6‐iodo‐5,6‐secolactones 17 and 19 (from 14 and 15 , resp.) and 4‐iodo‐4,5‐secolactone 18 (from 15 ) (see also Scheme 7). Oxidations of 5β‐hydroxy‐B‐norcholestan‐3β‐yl acetate ( 9 ) with both hypoiodite‐forming reagents (Pb(OAc)4/I2 and HgO/I2) proceeded similarly to the HgO/I2 reaction of the corresponding 5α‐hydroxy analogue 8 . Photolytic Pb(OAc)4 oxidation of 9 afforded, in addition to the (Z)‐ and (E)‐5,10‐seco 1(10)‐unsaturated ketones 10 and 11 , their isomeric 5,10‐seco 10(19)‐unsaturated ketone 22 , the acetal 5‐acetate 21 , and 5β,19‐epoxy derivative 23 (Scheme 9). Exceptionally, in the thermal Pb(OAc)4 oxidation of 9 , the 5,10‐seco ketones 10, 11 , and 22 were not formed, the only reaction being the stereoselective formation of the 5,10‐ethers with the β‐oriented epoxy bridge, i.e. the (10R)‐enol ether 20 and (5S,10R)‐acetal 5‐acetate 21 (Scheme 8). Possible mechanistic interpretations of the above transformations are discussed.  相似文献   

17.
Chiral [2H] -labelled methylene groups flanked by two double bonds within (poly)unsaturated fatty acids are readily available from trans-2,3-epoxy[2,3-2H2] alk-4-yn-l-ols, obtained in their turn by asymmetric epoxidation of the corresponding (E)-[2,3-2H2] alk-2-en-4-yn-l-ols (see Scheme 3). The procedure is exemplified for (8S,3Z,6Z,9Z)-[7,8-2H2] trideca-3,6,9-trienoic acid ((8S)- 11 ) and (8R)- 11 (Scheme 4) as well as for (5S,3Z,6Z)-[4,5?2H2]deca-3,6-dienoic acid ((5S)- 13 ) and (5R)- 13 (Scheme 5).  相似文献   

18.
The bicyclic ketones 1–6 entered into diastereoselective (> 95% d.e.) aldol reactions with a variety of aldehydes (Scheme 1 and Table 1). A representative series of aldols was converted (E)-selectively into α,β-unsaturated ketones by (i) spontaneous base-promoted dehydration (Scheme 1 and Table 2) and also by (ii) conversion into brosylate and base-mediated elimination with lithium diisopropylamide/N,N,N′,N′-tetramethylethylenediamine (LDA/TMEDA; Scheme 2). The simple α-methylidene ketones 17a and 18a were obtained via oxidation of the phenylselenides 19 and 20 , respectively (Scheme 4). The tertiary aldol 27 was synthesized best by treatment of 1,3-diketone 26 with Me4Zr (Table 4). In this fashion, the facile retro-aldol reaction of 27 was suppressed effectively.  相似文献   

19.
The dehydrogenation reaction of the heptalene-4,5-dimethanols 4a and 4d , which do not undergo the double-bond-shift (DBS) process at ambient temperature, with basic MnO2 in CH2Cl2 at room temperature, leads to the formation of the corresponding heptaleno[1,2-c]furans 6a and 6d , respectively, as well as to the corresponding heptaleno[1,2-c]furan-3-ones 7a and 7d , respectively (cf. Scheme 2 and 8). The formation of both product types necessarily involves a DBS process (cf. Scheme 7). The dehydrogenation reaction of the DBS isomer of 4a , i.e., 5a , with MnO2 in CH2Cl2 at room temperature results, in addition to 6a and 7a , in the formation of the heptaleno[1,2-c]-furan-1-one 8a and, in small amounts, of the heptalene-4,5-dicarbaldehyde 9a (cf. Scheme 3). The benzo[a]heptalene-6,7-dimethanol 4c with a fixed position of the C?C bonds of the heptalene skeleton, on dehydrogenation with MnO2 in CH2Cl2, gives only the corresponding furanone 11b (Scheme 4). By [2H2]-labelling of the methanol function at C(7), it could be shown that the furanone formation takes place at the stage of the corresponding lactol [3-2H2]- 15b (cf. Scheme 6). Heptalene-1,2-dimethanols 4c and 4e , which are, at room temperature, in thermal equilibrium with their corresponding DBS forms 5c and 5e , respectively, are dehydrogenated by MnO2 in CH2Cl2 to give the corresponding heptaleno[1,2-c]furans 6c and 6e as well as the heptaleno[1,2-c]furan-3-ones 7c and 7e and, again, in small amounts, the heptaleno[1,2-c]furan-1-ones 8c and 8e , respectively (cf. Scheme 8). Therefore, it seems that the heptalene-1,2-dimethanols are responsible for the formation of the furan-1-ones (cf. Scheme 7). The methylenation of the furan-3-ones 7a and 7e with Tebbe's reagent leads to the formation of the 3-methyl-substituted heptaleno[1,2-c]furans 23a and 23e , respectively (cf. Scheme 9). The heptaleno[1,2-c]furans 6a, 6d , and 23a can be resolved into their antipodes on a Chiralcel OD column. The (P)-configuration is assigned to the heptaleno[1,2-c]furans showing a negative Cotton effect at ca. 320 nm in the CD spectrum in hexane (cf. Figs. 3–5 as well as Table 7). The (P)-configuration of (–)- 6a is correlated with the established (P)-configuration of the dimethanol (–)- 5a via dehydrogenation with MnO2. The degree of twisting of the heptalene skeleton of 6 and 23 is determined by the Me-substitution pattern (cf. Table 9). The larger the heptalene gauche torsion angles are, the more hypsochromically shifted is the heptalene absorption band above 300 nm (cf. Table 7 and 8, as well as Figs. 6–9).  相似文献   

20.
Among seventeen different Lewis acids, TiCl4 was found to be the best catalyst for the [4 + 2] cycloaddition of cyclopentadiene to N,N′-fumaroylbis[(2R)-bornane-10,2-sultam] ((?)- 1 ). Independently of the TiCl4 molar concentration, almost constant and complete (98–89% d.e.) diastereofacial π-selection was achieved in the Diels-Alder addition of (?)- 1 to cyclopentadiene, cyclohexadiene, isoprene, and 2,3-dimethylbuta-1,3-diene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号