首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pairing propensity of new DNA analogues with a phosphinato group between O−C(3′) and a newly introduced OCH2 group at C(8) and C(6) of 2′‐deoxyadenosine and 2′‐deoxyuridine, respectively, was evaluated by force‐field calculations and Maruzen model studies. These studies suggest that these analogues may form autonomous pairing systems, and that the incorporation of single modified units into DNA 14mers is compatible with duplex formation. To evaluate the incorporation, we prepared the required phosphoramidites 3 and 4 from 2′‐deoxyadenosine and 2′‐deoxyuridine, respectively. The phosphoramidite 5 was similarly prepared to estimate the influence of a CH2OH group at C(8) on the duplex stability. The modified 14‐mers 6 – 9 were prepared by solid‐phase synthesis. Pairing studies show a decrease of the melting temperature by 2.5° for the duplex 13 ⋅ 9 , and of 6 – 8° for the duplexes 10 ⋅ 6 , 11 ⋅ 6 , 13 ⋅ 7 , and 14 ⋅ 8 , as compared to the unmodified duplexes.  相似文献   

2.
Nucleoside configuration (α-d vs. β-d ), nucleobase substituents, and the helical DNA environment of silver-mediated 5-aza-7-deazaguanine-cytosine base pairs have a strong impact on DNA stability. This has been demonstrated by investigations on oligonucleotide duplexes with silver-mediated base pairs of α-d and β-d anomeric 5-aza-7-deaza-2′-deoxyguanosines and anomeric 2′-deoxycytidines incorporated in 12-mer duplexes. To this end, a new synthetic protocol has been developed to access the pure anomers of 5-aza-7-deaza-2′-deoxyguanosine by glycosylation of either the protected nucleobase or its salt followed by separation of the glycosylation products by crystallization and chromatography. Thermal stability measurements were performed on duplexes with α-d /α-d and β-d /β-d homo base pairs or α-d /β-d and β-d /α-d hybrid pairs within two sequence environments, positions 6 or 7, of oligonucleotide duplexes. The respective Tm stability increases observed after silver ion addition differ significantly. Homo base pairs with β-d /β-d or α-d /α-d nucleoside combinations are more stable than α-d /β-d hybrid base pairs. The positional switch of silver-ion-mediated base pairs has a significant impact on stability. Nucleobase substituents introduced at the 5-position of the dC site of silver-mediated base pairs affect base pair stability to a minor extent. Our investigation might lead to applications in the construction of bioinspired nanodevices, in DNA diagnostics, or metal-DNA hybrid materials.  相似文献   

3.
The syntheses of 7-deaza-N6-methyladenine N9-(2′-deoxy-β-D -ribofuranoside) ( 2 ) as well as of 8-aza-7-deaza-N6-methyladenine N8? and N9?(2′-deoxyribofuranosides) ( 3 and 4 , resp.) are described. A 4,4′-dimeth-oxylritylation followed by phosphitylation yielded the methyl phosphoramidites 12–14 . They were employed together with the phosphoramidite of 2′-deoxy-N6v-methyladenosine ( 15 ) in automated solid-phase oligonucleotide synthesis. Alternating or palindromic oligonucleotides derived from d(A-T)6 or d(A-T-G-C-A-G-A*-T-C-T-G-C-A) but containing one methylated pyrrolo[2,3-d]pyrimidine or pyrazolo[3,4-d]pyrimidine moiety in place of a N6-methylaminopurine (A*) were synthesized. Melting experiments showed that duplex destabilization induced by a N6-Me group of 2′-deoxy-N6-methyladenosine is reversed by incorporation of 8-aza-7-deaza-2′-deoxy-N6-meihyladenosine, whereas 7-deaza-2′-deoxy-N6-methyladenostne decreased the Tm value further. Regiospecific phosphodiester hydrolysis of d(A-T-G-C-A-G-m6A-T-C-T-G1-C-A) by the endodeoxyribonuclease Dpn I, yielding d(A-T-G-C-A-G-m6A) and d(pT-C-T-G-C-A), was prevented when the residue c7m6Ad ( 2 ), c7m6z8Ad ( 3 ), or c7m6z8Ad′ ( 4 ) replaced m6Ad ( 1 ) indicating that N(7) of N6-methyladenine is a proton-acceptor site for the endodeoxyribonuclease.  相似文献   

4.
Base-modified octanucleotides derived from d(G1–G2–A–A–T–T–C–C–) ( 11 ) but containing 8-aza-7-deaza-2′-deoxyguanosine ( 2 ) instead of 2′-deoxyguanosine ( 1 ) have been prepared by solid-phase synthesis employing P(III) chemistry. Isobutyrylation of 2 , followed by 4, 4′-dimethoxytritylation and subsequent phosphitylation yielded the methyl or the cyanoethyl phosphoramidites 6a or 6b , respectively. They were used as building blocks in automated DNA synthesis. The resulting octanucleotides 12–14 containing 2 showed increased Tm values compared to the parent oligomer 11 . The oligomers 11 – 14 were employed as sequence-specific probes in endo-deoxyribonuclease Eco RI oligonucleotide recognition. Whereas displacement of dG-2 (enzymic cleavage site of 11 ) abolished phosphodiester hydrolysis, replacement of dG-1 enhanced the cleavage rate compared to 11 .  相似文献   

5.
Stabilization of DNA is beneficial for many applications in the fields of DNA therapeutics, diagnostics, and materials science. Now, this phenomenon is studied on heterochiral DNA, an autonomous DNA recognition system with complementary strands in α-D and β-D configuration showing parallel strand orientation. The 12-mer heterochiral duplexes were constructed from anomeric (α/β-D) oligonucleotide single-strands. Purine-2,6-diamine and 8-aza-7-deaza-7-bromopurine-2,6-diamine 2′-deoxyribonucleosides having the capability to form tridentate base pairs with dT were used to strengthen the stability of the dA–dT base pair. Tm data and thermodynamic values obtained from UV melting profiles indicated that the 8-aza-7-deaza 2′-deoxyribonucleoside decorated with a bromo substituent is so far the most efficient stabilizer for heterochiral DNA. Compared with that, the stabilizing effect of the purine-2,6-diamine 2′-deoxyribonucleoside is low. Global changes of helix structures were identified by circular dichroism (CD) spectra during melting.  相似文献   

6.
Oligonucleotides with alternating 8-aza-7-deaza-2′-deoxyadenosine (= c7z8Ad2) and dT residues (see 11, 14 and 16 ) or 4-aminopyrazolo [3,4-d] pyrimidine N2-(β-D -2′-deoxyribofuranoside) (= c7z8A′d1); ( 3 ) and dT residues (see 12 ) have been prepared by solid-phase synthesis using P(III) chemistry, Additionally, palindromic oligomers derived from d(C-T-G-G-A-T-C-C-A-G) but containing 2 or 3 instead of dA (see 18 – 22 ) have been synthesized. Benzoylation of 2 or 3 , followed by 4,4′-dimethoxytritylation and subsequent phosphitylation yielded the methyl or the cyanoethyl phosphoramidites 8a,b and 9 . They were employed in automated. DNA synthesis. Alternating oligomers containing 2 or 3 showed increase dTm values compared to those with dA, in particular 12 with an unusual N2-glycosylic bond. The palindromic oligomers 18 - 22 containing 2 or 3 instead of dA outside of the enzymic recognition side reduced the hydrolysis rate, replacement within d(G-A-T-C) abolished phosphodiester hydrolysis.  相似文献   

7.
The oligonucleotide building blocks 4b–d derived from 7-bromo-, 7-chloro-, and 7-methyl-substituted 7-deaza-2′-deoxyadenosines 3b–d were prepared. They were employed in the solid-phase synthesis of the oligonucleotides 7–25 . The dA residues of the homomer d(A12), the alternating d[(A-T)6], and the palindromic d(G-T-A-G-A-A-T-T-C-T-A-C) were replaced by 3b–d as well as by the parent 7-deaza-2′-deoxyadenosine ( 3a ). The melting profiles and CD spectra of oligonucleotide duplexes, showing this major groove modification, were measured, and the Tm values as well as the thermodynamic data were determined. It was found that small substituents such as Br, Cl, or Me introduced in the 7-position of a 7-deazaadenine residue increase the duplex stability compared to oligonucleotides containing adenine.  相似文献   

8.
The oligonucleotide building blocks, the phosphonates 1a, b and the phosphoramidites 2a, b derived from 7-iodo- and 7-bromo-7-deaza-2′-deoxyguanosines 3a, b were prepared. They were employed in solid-phase oligonucleotide synthesis of the alternating octamers d(Br7c7G-C)4 ( 8 ) and d(I7c7G-C)4 ( 9 ) as well as the homo-oligonucleotides d[(Br7c7G)5-G] ( 11 ) and d[(I7c7G)5-G] ( 12 ). The melting profiles and CD spectra of oligonucleotide duplexes were measured. The Tm values as well as the thermodynamic data were determined and correlated to the major-groove modification of this DNA. The self-complementary octamers 8 and 9 form more stable duplexes compared to the parent oligomer d(G-C)4. The heteroduplex of d[(I7c7G)5-G] ( 12 ) with d(C6) is slightly destabilized (ΔTm = ?12°) over that of d[(c7G)5-G] with d(C6). However, the complex of 12 with poly(C) is more stable than that of d[(c7G5-G)] with poly(C).  相似文献   

9.
The phosphoramidites 6b and 9 as well as the phosphonate 6a derived from 7-(hex-1-ynyl)- and 7-[5-(trifluoroacetamido)pent-1-ynyl]-substituted 7-deaza-2′-deoxyguanosines 1 and 10 , respectively, were prepared (Scheme 1). They were employed in solid-phase oligodeoxynucleotide synthesis of the alternating octamers d(hxy7c7G-C)4 ( 12 ), d(C-hxy7c7G)4 ( 13 ), and d(npey 7c7G-C)4 ( 15 ) as well as of other oligonucleotides (see 22 – 25 ; Table 2; hxy = hex-1-ynyl, npey = 5-aminopent-1-ynyl). The Tm values and the thermodynamic data of duplex formation were determined and correlated with the major-groove modification of the DNA fragments. A hexynyl side chain introduced into the 7-position of a 7-deazaguanine residue (see 1 ) was found to fit into the major groove without any protrusion. The incorporation of the (5-aminopent-1-ynyl)-modified 7-deaza-2′-deoxyguanosine 2 into single-stranded oligomers of the type 24 and 25 did not lead to change in duplex stability compared to the parent oligonucleotides. The self-complementary oligomer 15 with alternating npey7c7Gd ( 2 ) and dC units did not lead to a cooperative melting, either due to orientational disorder or interaction of the 5-aminopent-1-ynyl moiety with a base or with phosphate residues nearby or on the opposite strand.  相似文献   

10.
The 8-aza-7-deazaguanine N8-(2'-deoxy-beta-D-ribofuranoside) (1) was synthesized, converted into the phosphoramidite 4 and incorporated into oligonucleotides. Nucleoside 1 forms stable base pairs with 2'-deoxy-5-methylisocytidine in DNA with antiparallel chain orientation (aps) and with 2'-deoxycytidine in duplexes with parallel chains (ps). According to the CD spectra self-complementary oligonucleotides d(1-m5isoC)3 and d(1-C), form autonomous DNA-structures. Neither the nucleoside 1 nor the regularly linked 8-aza-7-deaza-2'-deoxyguanosine form G-like tetrads while the regularly linked 8-aza-7-deaza-2'-deoxyisoguanosine gives higher molecular assemblies which are destroyed by bulky 7-bromo substituents. This was verified on monomeric nucleosides by ESI-MS spectrometry and on oligonucleotides by HPLC analysis.  相似文献   

11.
The unusually N8‐glycosylated pyrazolo[3,4‐d]pyrimidine‐4,6‐diamine 2′‐deoxyribonucleoside ( 3 ) was synthesized and converted to the phosphoramidite 11 . Oligonucleotides were prepared by solid‐phase synthesis, and the base pairing of compound 3 was studied. In non‐self‐complementary duplexes containing compound 3 located opposite to the four canonical DNA constituents, strong base pairs are formed that show ambiguous pairing properties. The self‐complementary duplex d( 3 ‐T)6 ( 34 ⋅ 34 ) is significantly more stable than d(A‐T)6.  相似文献   

12.
Oligonucleotides carrying alkynyl and aminoalkynyl chains at the position 7 of 7-deazaadenine are synthesized, and the chain lengths as well as the bulkiness of the substituents are varied. The corresponding nucleosides 1a – f are prepared from 7-deaza-2′-deoxy-7-iodoadenosine and the particular alkynes by the Pd0-catalyzed cross-coupling reaction. The nucleosides are converted to the phosphoramidites 2a – f , which are used in solid-phase oligonucleotide synthesis. The stability of the duplexes is determined by the Tm values and the thermodynamic data. Compared to adenine or the unsubstituted 7-deazaadenine, the incorporation of a 7-ethynyl chain in a 7-deazaadenine moiety increases the duplex stability significantly, while a dodecynyl residue or a bulky steroid moiety leads to a duplex destabilization. A 3-aminoprop-1-ynyl residue (see 1g ) or a 5-aminopent-1-ynyl residue (see 1h ), which are charged under neutral conditions, lead to zwitterionic DNA. A high density of charged residues as found in homomers impairs duplex formation, most probably by counter-ion condensation.  相似文献   

13.
Solid-liquid phase-transfer glycosylation (KOH, tris[2-(2-methoxyethoxy)ethye]amine ( = TDA-1), MeCN) of pyrrolo[2,3-d]pyrimidines such as 3a and 3b with an equimolar amount of 5-O-[(1,1 -dimethylethyl)dimethylsilyl]-2,3-O-(1-methylethylidene)-α-D -ribofuranosyl chloride (1) [6] gave the protected β-D -nucleosides 4a and 4b , respectively, stereoselectively (Scheme). The β-D -anomer 2 [6] yielded the corresponding α-D -nucleosides 5a and 5b with traces of the β-D -compounds. The 6-substituted 7-deazapurine nucleosides 6a , 7a , and 8 were converted into tubercidin (10) or its α-D -anomer (11) . Spin-lattice relaxation measurements of anomeric ribonucleosides revealed that T1 values of H? C(8) in the α-D -series are significantly increased compared to H? C(8) in the β-D -series while the opposite is true for T1 of H? C(1′). 15N-NMR data of 6-substituted 7-deazapurine D -ribofuranosides were assigned and compared with those of 2′-deoxy compounds. Furthermore, it was shown that 7-deaza-2′deoxyadenosine ( = 2′-deoxytubercidin; 12 ) is protonated at N(1), whereas the protonation site of 7-deaza-2′-deoxyguanosine ( 20 ) is N(3).  相似文献   

14.
Oligonucleotides containing halogenated `purine' and pyrimidine bases were synthesized. Bromo and iodo substituents were introduced at the 7‐position of 8‐aza‐7‐deazapurine‐2,6‐diamine (see 2b , c ) or at the 5‐position of uracil residues (see 3b , c ). Phosphoramidites were synthesized after protection of 2b with the isobutyryl residue and of 2c with the benzoyl group. Duplexes containing the residues 2b or 2c gave always higher Tm values than those of the nonmodified counterparts containing 2′‐deoxyadenosine, the purine‐2,6‐diamine 2′‐deoxyribonucleoside ( 1 ), or 2a at the same positions. Six 2b residues replacing dA in the duplex 5′‐d(TAGGTCAATACT)‐3′ ( 11 )⋅5′‐d(AGTATTGACCTA)‐3′ ( 12 ) raised the Tm value from 48 to 75° (4.5° per modification (Table 3)). Contrary to this, incorporation of the 5‐halogenated 2′‐deoxyuridines 3b or 3c into oligonucleotide duplexes showed very little influence on the thermal stability, regardless of which `purine' nucleoside was located opposite to them (Tables 4 and 5). The positive effects on the thermal stability of duplexes observed in DNA were also found in DNA⋅RNA hybrids or in DNA with parallel chain orientation (Tables 8 and 9, resp.).  相似文献   

15.
Two modified DNA 14‐mers have been prepared, containing either a 2‐deoxy‐D ‐erythrose‐derived adenosine analogue carrying a C(8)−CH2O group (deA*), or a 2‐deoxy‐D ‐erythrose‐derived uridine analogue, possessing a C(6)−CH2O group (deU*). These nucleosides are linked via a phosphinato group between O−C(3′) (deA* and deU*) and O−C(5′) of one neighbouring nucleotide, and between C(8)−CH2O (deA*), or C(6)−CH2O (deU*) and O−C(3′) of the second neighbour. N6‐Benzoyl‐9‐(β‐D ‐erythrofuranosyl)adenine ( 3 ) and 1‐(β‐D ‐erythrofuranosyl)uracil ( 4 ) were prepared from D ‐glucose, deoxygenated at C(2′), and converted into the required phosphoramidites 1 and 2 . The modified tetradecamers 31 and 32 were prepared by solid‐phase synthesis. Pairing studies show a decrease in the melting temperature of 7 to 8 degrees for the duplexes 31 ⋅ 30 and 32 ⋅ 29 , as compared to the unmodified DNA duplex 29 ⋅ 30 . A comparison with the pairing properties of tetradecamers similarly incorporating deoxyribose‐ instead of the deoxyerythrose‐derived nucleotides evidences that the CH2OH substituent at C(4′) has no significant effect on the pairing.  相似文献   

16.
Dipyrido[3,2-a:2′,3′-c]phenazine (dppz) derivatives were conjugated to 9-mer and 18-mer DNA (ODN) at a site without nucleobase, either at the 5′- or 3′-end or at a internucleotide position, via linkers of 7, 12, or 18 atoms lengths. These dppz-linked ODNs were synthesized using novel backbone glycerol phosphoramidites: Glycerol, serving as artificial nucleoside without nucleobase, was modified to amines 10 , 23 , and 24 , which were suitable for the subsequent key reaction with dppz-carboxylic acid 3 (Schemes 2 and 3). The products of these reactions (see 5 – 7 ) were then transformed to the standard phosphoramidite derivatives (see 27 , 29 , and 30 ) or used for loading on a CPG support (see 28 , 31 , and 32 ). The dppz-modified ODNs were subsequently assembled in the usual manner using automated solid-phase DNA synthesis. The 9-mer ODN-dppz conjugates 35 – 43 were tested for their ability to form stable duplexes with target DNA or RNA strands (D11 ( 60 ) or R11 ( 61 )), while the 18-mer ODN-dppz conjugates 48 – 56 were tested for their ability to form stable triplexes with a DNA target duplex D24⋅D24 ( 62 ) (see Tables 1 and 2). The presence of the conjugated dppz derivative increases the stability of DNA⋅DNA and DNA⋅RNA duplexes, typically by a ΔTm of 7.3 – 10.9° and 4.5 – 7.4°, respectively, when the dppz is tethered at the 5′- or 3′-terminal (Table 2). The dppz derivatives also stabilize triplexes when attached to the 5′- or 3′-end, with a ΔTm varying from 3.8 – 11.1° (Table 3). The insertion of a dppz building block at the center of a 9-mer results in a considerably poorer stability of the corresponding DNA⋅DNA duplexes (ΔTm=0.5 to 4.2°) and DNA⋅RNA duplexes (ΔTm=−1.5 to 0.9°), while the replacement of one interior nucleotide by a dppz building unit in the corresponding 8-mer ODN does not reveal the formation of any duplex at all. Different types of modifications in the middle of the 18-mer ODN, in general, do not lead to any triplex formation, except when the dppz derivative is tethered to the ODN through a 12-atom-long linker (Entry 9 in Table 3).  相似文献   

17.
Oligonucleotides containing N 7-(2′-deoxy-β-D -erythro-pentofuranosyl)adenine ( 1 ), -hypoxanthine ( 2 ), and -guanine ( 3 ) were synthesized on solid-phase using phosphonate and phosphoramidite chemistry. As part of the synthesis of compound 2 , the nucleobase-anion glycosylation of various 6-alkoxypurines with 2-deoxy-3,5-di-O-(4-toluoyl)-α-D -erythro-pentofuranosyl chloride ( 5 ) was investigated. The duplex stability of oligonucleotides containing N 7-glycosylated purines opposite to regular pyrimidines was determined, and thermodynamic data were calculated from melting profiles. Oligodeoxyribonucleotide duplexes containing N 7-glycosylated adenine⋅Td or N 7-glycosylated guanine⋅Cd base pairs are more stable in the case of parallel strand orientation than in the case of antiparallel chains.  相似文献   

18.
Oligonucleotides with parallel (ps) or antiparallel (aps) chain orientation containing 7-deaza-2′-deoxyisoguanosine ( 1 ) or 2′-deoxyisoguanosine ( 2 ) were prepared. The phosphoramidite and phosphonate building blocks 3 – 6 were synthesized and used in solid-phase synthesis. The diphenylcarbamoyl (dpc) residue was used for the 2-oxo group protection and the isobutyryl (iBu=ib) residue for the amino function. Hybridization experiments were performed with oligonucleotides containing 7-deazaisoguanine or isoguanine. Regarding 7-deazapurine-containing oligonucleotides, the 7-deazaisoguanine⋅cytosine base pair was the strongest in ps-duplexes, while that of 7-deazaisoguanine⋅5-methylisocytosine was the most stable one in aps-DNA. Ambiguous base pairing of 7-deazaisoguanine with cytosine, 5-methylisocytosine, thymine, and guanine was observed in the case of aps-duplexes, whereas in ps-duplexes, the ambiguity was extended to adenine. The 7-deazaisoguanine-containing duplexes showed almost identical base-pair stabilities as those containing isoguanine. According to this, various base-pair motifs are proposed. The 7-deaza-2′-deoxyisoguanosine was found to be an effective substitute of 2′-deoxyisoguanosine.  相似文献   

19.
The synthesis of 6-amino-1-(2′,3′-dideoxy-β-D -glycero-pentofuranosyl)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one ( =8-aza-7-deaza-2′,3′-dideoxyguanosine; 1 ) from its 2′-deoxyribofuranoside 5a by a five-step deoxygenation route is described. The precursor of 5a, 3a , was prepared by solid-liquid phase-transfer glyscosylation which gave higher yields (57%) than the liquid-liquid method. Ammonoloysis of 3b furnished the diamino nucleoside 3c . Compound 1 was less acid sensitive at the N-glycosydic bond than 2′,3′-dideoxyguanosine ( 2 ).  相似文献   

20.
The N(1)- and N(2)-(2′-deoxyribofuranosides) 1 and 2 , respectively, of 8-aza-7-deazaguanine were prepared via phase-transfer glycosylation in the presence or absence of Bu4NHSO4 as catalyst of 6-amino-4-methoxy-lH-pyrazolo[3,4-d]pyrimidine ( 7c ) with 2-deoxy-3,5-di-O-(p-toluoyl)-α-D -erythro-pentofuranosyl chloride ( 10 ). On a similar route, but without catalyst and employing THF as organic phase, the 6-amino-4-chloronucleosides 11b and 12b were synthesized from 7a and converted into the N(1)-and N(2)-substituted 4-thioxo analogues 17a and 18a , respectively. The ratio of N(1)- to N(2)-glycosylation was 2:1 for 7c and 1:1 for 7a , viz. depending on the nucleobase structure. The rate of the H+-catalyzed N-glycosyl hydrolysis was strongly decreased for the N(2)-(β-D -2′-deoxyribofuranosides) as compared to the N(1)-compounds. However, the N(1)-nucleoside 1 , which is an isostere of 2′-deoxyguanosine, is sufficiently stable to be employed later in solid-phase oligonucleotide synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号