首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
3.
Reported herein is an asymmetric [3+2] cycloaddition reaction of azomethine ylides with β‐trifluoromethyl β,β‐disubstituted enones, a reaction which is enabled by a Ming‐Phos‐derived copper(I) catalyst (Ming‐Phos=chiral sulfinamide monophosphines, Figure 2 ). This method provides scalable and efficient access to the highly substituted pyrrolidines with a trifluoromethylated, all‐carbon quaternary stereocenter in good yields with up to greater than 20:1 d.r. and 98 % ee. The reaction has a broad substrate scope and tolerates a wide range of functional groups.  相似文献   

4.
The first examples of neutral and cationic bismuth complexes bearing β‐ketoiminato ligands were isolated by employing salt metathesis route. BiCl3 reacts with [O=C(Me)]CH[C(Me)N(K)Ar] ( 1 ) resulting in a homoleptic β‐ketoiminato bismuth complex Bi[{O=C(Me)}CH{C(Me)NAr}]3 ( 2 ). The reaction between BiCl3 and [(CH2)2{N(K)C(Me)CHC(Me)=O}2] ( 3 ) leads to the formation of a cationic bismuth complex [Bi{(CH2)2(NC(Me)CHC(Me)=O)2}]4[Bi2Cl10] ( 4 ).  相似文献   

5.
The four possible A/B cis-fused diastereoisomers of Ambrox® have been synthesized and their configurations and conformations established by X-ray and NMR analysis. Only 5β-ambrox (= 1,2,3a,4,5,5β,6,7,8,9,9a,9bα-dodecahydro-3aβ,6,6,9aβ-tetramethylnaphtho[2,1-b]furan; 5 ) has an odor quality comparable to Ambrox®. The 1,3-synperiplanar/diaxial conformation of the substituents at C(8) ( = C(3a)) and C(10) (= C(9a)) has thus been confirmed to be a compulsory structure element for the particular odor.  相似文献   

6.
In contrast to the continuously growing number of methods that allow for the efficient α‐functionalization of amines, few strategies exist that enable the direct functionalization of amines in the β‐position. A general redox‐neutral strategy is outlined for amine β‐functionalization and α,β‐difunctionalization that utilizes enamines generated in situ. This concept is demonstrated in the context of preparing polycyclic N,O‐acetals from simple 1‐(aminomethyl)‐β‐naphthols and 2‐(aminomethyl)‐phenols.  相似文献   

7.
Carbonyl ylides arising from ethyl acetodiazoacetate/dimethyl diazomalonate and α,β‐enones with mainly s‐cis conformations underwent disrotatory cyclization to produce dihydrofuran derivatives. This process proved to be sensitive to steric effects. The corresponding ylides arising from rather s‐trans α,β‐enals yielded dioxole derivatives. The mechanisms of the reactions are discussed.  相似文献   

8.
The Ser, Cys, and His side chains play decisive roles in the syntheses, structures, and functions of proteins and enzymes. For our structural and biomedical investigations of β‐peptides consisting of amino acids with proteinogenic side chains, we needed to have reliable preparative access to the title compounds. The two β3‐homoamino acid derivatives were obtained by Arndt–Eistert methodology from Boc‐His(Ts)‐OH and Fmoc‐Cys(PMB)‐OH (Schemes 2–4), with the side‐chain functional groups' reactivities requiring special precautions. The β2‐homoamino acids were prepared with the help of the chiral oxazolidinone auxiliary DIOZ by diastereoselective aldol additions of suitable Ti‐enolates to formaldehyde (generated in situ from trioxane) and subsequent functional‐group manipulations. These include OH→OtBu etherification (for β2hSer; Schemes 5 and 6), OH→STrt replacement (for β2hCys; Scheme 7), and CH2OH→CH2N3→CH2NH2 transformations (for β2hHis; Schemes 9–11). Including protection/deprotection/re‐protection reactions, it takes up to ten steps to obtain the enantiomerically pure target compounds from commercial precursors. Unsuccessful approaches, pitfalls, and optimization procedures are also discussed. The final products and the intermediate compounds are fully characterized by retention times (tR), melting points, optical rotations, HPLC on chiral columns, IR, 1H‐ and 13C‐NMR spectroscopy, mass spectrometry, elemental analyses, and (in some cases) by X‐ray crystal‐structure analysis.  相似文献   

9.
Closely related structures, like esters and lactones, have vastly different physical properties. This is apparently due to differences in the intermolecular interactions. The intermolecular interactions of methyl acetate, β-propiolactone, ethyl acetate, and γ-butyrolactone have been studied using the AM1 semiempirical method. Some of the “arranged clusters” were also compared to possible covalently bound trimers and tetramers of β-propiolactone and γ-butyrolactone. © 1992 John Wiley & Sons, Inc.  相似文献   

10.
β-Keto-β-sulfonylenamines 2a,b reacted with benzamidine or guanidines to give 2,4-disubstituted 5-methanesulfonylpyrimidines 3a-d , whose methanesulfonyl groups were substituted by n-butyllithium or alkylmagnesium bromides to yield 2,4-disubstitued 5-alkylpyrimidines 6a-d. 2-Substituted 4-amino-5-sulfonylpyrimidines 7a,b, 8 and 2-substituted 5-benzenesulfonylpyrimidin-4-ones 9a,b were similarly obtained from β-cyano-β-sulfonylenamines 2c,d and β-ethoxycarbonyl-β-sulfonylenamine ( 2e ), respectively.  相似文献   

11.
Synthesis of Diastereo- and Enantioselectively Deuterated β,ε-, β,β-, β,γ- and γ,γ-Carotenes We describe the synthesis of (1′R, 6′S)-[16′, 16′, 16′-2H3]-β, εcarotene, (1R, 1′R)-[16, 16, 16, 16′, 16′, 16′-2H6]-β, β-carotene, (1′R, 6′S)-[16′, 16′, 16′-2H3]-γ, γ-carotene and (1R, 1′R, 6S, 6′S)-[16, 16, 16, 16′, 16′, 16′-2H6]-γ, γ-carotene by a multistep degradation of (4R, 5S, 10S)-[18, 18, 18-2H3]-didehydroabietane to optically active deuterated β-, ε- and γ-C11-endgroups and subsequent building up according to schemes \documentclass{article}\pagestyle{empty}\begin{document}${\rm C}_{11} \to {\rm C}_{14}^{C_{\mathop {26}\limits_ \to }} \to {\rm C}_{40} $\end{document} and C11 → C14; C14+C12+C14→C40. NMR.- and chiroptical data allow the identification of the geminal methyl groups in all these compounds. The optical activity of all-(E)-[2H6]-β,β-carotene, which is solely due to the isotopically different substituent not directly attached to the chiral centres, is demonstrated by a significant CD.-effect at low temperature. Therefore, if an enzymatic cyclization of [17, 17, 17, 17′, 17′, 17′-2H6]lycopine can be achieved, the steric course of the cyclization step would be derivable from NMR.- and CD.-spectra with very small samples of the isolated cyclic carotenes. A general scheme for the possible course of the cyclization steps is presented.  相似文献   

12.
The title compounds were prepared from valine‐derived N‐acylated oxazolidin‐2‐ones, 1 – 3, 7, 9 , by highly diastereoselective (≥ 90%) Mannich reaction (→ 4 – 6 ; Scheme 1) or aldol addition (→ 8 and 10 ; Scheme 2) of the corresponding Ti‐ or B‐enolates as the key step. The superiority of the ‘5,5‐diphenyl‐4‐isopropyl‐1,3‐oxazolidin‐2‐one’ (DIOZ) was demonstrated, once more, in these reactions and in subsequent transformations leading to various t‐Bu‐, Boc‐, Fmoc‐, and Cbz‐protected β2‐homoamino acid derivatives 11 – 23 (Schemes 3–6). The use of ω‐bromo‐acyl‐oxazolidinones 1 – 3 as starting materials turned out to open access to a variety of enantiomerically pure trifunctional and cyclic carboxylic‐acid derivatives.  相似文献   

13.
A new approach for the fully chemoselective α‐arylation of amides is presented. By means of electrophilic amide activation, aryl groups can be regioselectively introduced α‐ to amides, even in the presence of esters and alkyl ketones. Mechanistic studies reveal key reaction intermediates and emphasize a remarkably subtle base effect in this transformation.  相似文献   

14.
15.
Cycloadditions of α,β-unsaturated acyl cyanides (=2-oxonitriles) 1 – 6 to styrene and its p-substituted derivatives 7a – f , h are of inverse electron demand and provide, under mild conditions, regio- and stereoselectively 2-aryl-3,4-dihydro-2H-pyran-6-carbonitriles 8 – 13 , generally in good yield. Rates for the cycloaddition of acryloyl cyanide 1 to p-substituted styrenes, determined in competition reactions of substrate pairs relative to that of styrene, increase in the order of electron-donating ability NO2<Cl<H<AcO<Me<AcNH<MeO of the p-substituent. Linear correlation of log (kX/kH), and σp+ substituent constants (a Hammett-type plot), gives a reaction constant ρp+ of −1.47±0.17, supporting a concerted mechanism.  相似文献   

16.
17.
18.
Iodine‐promoted direct diamination of α,β‐unsaturated ketone to form two C?N bonds has been developed starting from chalcone and secondary amine. This reaction was performed in THF at 50 °C in the presence of I2 and K2CO3. The protocol is metal‐free, operationally simple and carried out under mild conditions, providing an effective new way for directing diamination reactions.  相似文献   

19.
The four α,α,α, β,β,β,-hexamethyl α-hydrogen Coα, Coβ-dicyanocobyrinates 2b, d–f , with a free b-, d-, e-, and f-propionic-acid function, respectively, were prepared by partial hydrolysis of heptamethyl Coα, Coβ-dicyanocobyrinate (cobester; 1 ) in aqueous sulfuric acid. The cobester monoacids 2b, d–f were obtained as a ca. 1:1:1:1 mixture which was separated. The monoacids were purified by chromatography and isolated in crystalline form. The position of the free propionic-acid function was determined by an extensive analysis of 2b, d–f using 2D-NMR techniques; an analysis of the C,H-coupling network topology resulted in an alternative assignment strategy for cobyrinic-acid derivatives, based on pattern recognition. Additional information on the structure of the most polar of the four hexamethyl cobyrinates, of the b-isomer 2b , was also obtained in the solid state from a single-crystal X-ray analysis. Earlier structural assignments based on 1D-NMR spectra of the corresponding regioisomeric monoamides 3b, d–f (obtained from crystalline samples of the monoacids 2b, d–f ) were confirmed by the present investigations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号