首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new link invariant is derived using the exactly solvable chiral Potts model and a generalized Gaussian summation identity. Starting from a general formulation of link invariants using edge-interaction spin models, we establish the uniqueness of the invariant for self-dual models. We next apply the formulation to the self-dual chiral Potts model, and obtain a link invariant in the form of a lattice sum defined by a matrix associated with the link diagram. A generalized Gaussian summation identity is then used to carry out this lattice sum, enabling us to cast the invariant into a tractable form. The resulting expression for the link invariant is characterized by roots of unity and does not appear to belong to the usual quantum group family of invariants. A table of invariants for links with up to eight crossings is given.  相似文献   

2.
Using the framework of supersymmetric Witten-Jones theory the composite link polynomials related to the basic classical simple complex Lie superalgebras will be computed. The related graded Casimir operators will be given explicitly for arbitrary covariant class I representations. As a consequence of the topological interpretation of link invariants, it is essentially possible to derive the Boltzmann weights of the associated IRF models found previously as solutions of the graded Yang-Baxter equation.  相似文献   

3.
A method to obtain explicit and complete topological solution of SU(2) Chern-Simons theory onS 3 is developed. To this effect the necessary aspects of the theory of coloured-oriented braids and duality properties of conformal blocks for the correlators ofSU(2) k Wess-Zumino conformal field theory are presented. A large class of representations of the generators of the groupoid of coloured-oriented braids are obtained. These provide a whole lot of new link invariants of which Jones polynomials are the simplest examples. These new invariants are explicity calculated as illustrations for knots up to eight crossings and twocomponent multicoloured links up to seven crossings.  相似文献   

4.
5.
We study the perturbation to symmetries and adiabatic invariants of a generalized Birkhoff system. Based on the invariance of differential equations under infinitesimal transformations, Lie symmetries, laws of conservations, perturbation to the symmetries and adiabatic invariants of the generalized Birkhoff system are presented. First, the concepts of Lie symmetries and higher order adiabatic invariants of the generalized Birkhoff system are proposed. Then, the conditions for the existence of the exact invariants and adiabatic invariants are proved, and their forms are given. Finally, an example is presented to illustrate the method and results.  相似文献   

6.
A general method is developed for constructing quantum group invariants and determining their eigenvalues. Applied to the universalR-matrix this method leads to the construction of a closed formula for link polynomials. To illustrate the application of this formula, the quantum groupsU q (E 8),U q (so(2m+1) andU q (gl(m)) are considered as examples, and corresponding link polynomials are obtained.  相似文献   

7.
A simple procedure to obtain complete, closed expressions for Lie algebra invariants is presented. The invariants are ultimately polynomials in the group parameters. The construction of finite group elements requires the use of projectors, whose coefficients are invariant polynomials. The detailed general forms of these projectors are given. Closed expressions for finite Lorentz transformations, both homogeneous and inhomogeneous, as well as for Galilei transformations, are found as examples.  相似文献   

8.
For non-abelian simple objects in a unitary modular category, the density of their braid group representations, the #P-hard evaluation of their associated link invariants, and the BQP-completeness of their anyonic quantum computing models are closely related. We systematically study such properties of the non-abelian simple objects in the metaplectic modular categories SO(m)2 for an odd integer m ≥ 3. The simple objects with quantum dimensions \({\sqrt{m}}\) have finite image braid group representations, and their link invariants are classically efficient to evaluate. We also provide classically efficient simulations of their braid group representations. These simulations of the braid group representations can be regarded as qudit generalizations of the Knill–Gottesmann theorem for the qubit case. The simple objects of dimension 2 give us a surprising result: while their braid group representations have finite images and are efficiently simulable classically after a generalized localization, their link invariants are #P-hard to evaluate exactly. We sharpen the #P-hardness by showing that any sufficiently accurate approximation of their associated link invariants is already #P-hard.  相似文献   

9.
《Nuclear Physics B》2002,621(3):689-711
It is known that the Seiberg–Witten invariants, derived from supersymmetric Yang–Mill theories in four dimensions, do not distinguish smooth structure of certain non-simply-connected four manifolds. We propose generalizations of Donaldson–Witten and Vafa–Witten theories on a Kähler manifold based on Higgs bundles. We showed, in particular, that the partition function of our generalized Vafa–Witten theory can be written as the sum of contributions our generalized Donaldson–Witten invariants and generalized Seiberg–Witten invariants. The resulting generalized Seiberg–Witten invariants might have, conjecturally, information on smooth structure beyond the original Seiberg–Witten invariants for non-simply-connected case.  相似文献   

10.
We present a general method to construct the sequence of new link polynomials and its two variable extension from exactly solvable models in statistical mechanics. First, we find representations of the braid group from the Boltzmann weights of the exactly solvable models. Second, we give the Markov traces associated with new braid group representations and using them construct new link polynomials. Third, we extend the theory into a two-variable version of the new link polynomials. Throughout the paper, we emphasize the essential roles played by the exactly solvable models and the underlying Yang-Baxter relation.  相似文献   

11.
The rotational invariants constructed by the products of three spherical harmonic polynomials are expressed generally as homogeneous polynomials with respect to the three coordinate vectors in the compact form, where the coefficients are calculated explicitly in this paper.  相似文献   

12.
Based on the concept of higher-order adiabatic invariants of mechanical system with action of a small perturbation, the perturbation to Lie symmetry and generalized Hojman adiabatic invariants for the relativistic Hamilton system are studied. Perturbation to Lie symmetry is discussed under general infinitesimal transformation of groups in which time is variable. The form and the criterion of generalized Hojman adiabatic jnvariants for this system are obtained. Finally, an example is given to illustrate the results.  相似文献   

13.
A. V. Kats 《JETP Letters》2003,77(12):657-661
The intriguing problem of the “missing” MHD integrals of motion is solved in this paper; i.e., analogues of the Ertel, helicity, and vorticity invariants are obtained. The two latter have been discussed earlier in the literature only for specific cases, and the Ertel invariant is presented for the first time. The set of ideal MHD invariants obtained appears to be complete: to each hydrodynamic invariant corresponds its MHD generalization. These additional invariants are found by means of the fluid velocity decomposition based on its representation in terms of generalized potentials. This representation follows from the discussed variational principle in Hamiltonian (canonical) variables, and it naturally decomposes the velocity field into the sum of “hydrodynamic” and “ magnetic” parts. The “missing” local invariants are expressed in terms of the “ hydrodynamic” part of the velocity and therefore depend on the (nonunique) velocity decomposition; i.e., they are gauge-dependent. Nevertheless, the corresponding conserved integral quantities can be made decomposition-independent by the appropriate choice of the initial conditions for the generalized potentials. It is also shown that the Weber transformation of MHD equations (partial integration of the MHD equations) leads to the velocity representation coinciding with that following from the variational principle with constraints. The necessity of exploiting the complete form of the velocity representation in order to deal with general-type MHD flows (nonbarotropic, rotational, and with all possible types of breaks as well) in terms of single-valued potentials is also under discussion. The new basic invariants found allow one to widen the set of the local invariants on the basis of the well-known recursion procedure.  相似文献   

14.
A proof is given for the representations of invariant and covariant (Schwartz) distributions onR n , which are often used in theoretical physics. We express invariant distributions as distributions of standard polynomial invariants and decompose covariant distributions in standard polynomial covariants. Our consideration is restricted to compact groups acting linearly onR n . The representation for invariant distributions is obtained provided the standard invariants form an algebraically independent generating set in the ring of invariant polynomials. As for the standard covariants we assume that in the class of covariant polynomials they provide a unique decomposition into a sum of the standard covariants multiplied with invariant polynomials.  相似文献   

15.
罗绍凯 《中国物理快报》2007,24(11):3017-3020
For a nonholonomic mechanics system with the action of small disturbance, the Lie symmetrical perturbation and adiabatic invariants of generalized Hojman type are studied under general infinitesimal transformations of groups in which the generalized coordinates and time are variable. On the basis of the invariance of disturbed nonholonomic dynamical equations under general infinitesimal transformations, the determining equations, the constrained restriction equations and the additional restriction equations of Lie symmetries of the system are constructed, which only depend on the variables t, qs and q^.s. Based on the definition of higher-order adiabatic invariants of a mechanical system, the perturbation of Lie symmetries for a nonholonomic system with the action of small disturbance is investigated, and the Lie symmetrical adiabatic invariants, the weakly Lie symmetrical adiabatic invariants and the strongly Lie symmetrical adiabatic invariants of generalized Hojman type of disturbed nonholonomic systems are obtained. An example is given to illustrate applications of the results.  相似文献   

16.
罗绍凯  陈向炜  郭永新 《中国物理》2007,16(11):3176-3181
Based on the invariance of differential equations under infinitesimal transformations of group, Lie symmetries, exact invariants, perturbation to the symmetries and adiabatic invariants in form of non-Noether for a Lagrange system are presented. Firstly, the exact invariants of generalized Hojman type led directly by Lie symmetries for a Lagrange system without perturbations are given. Then, on the basis of the concepts of Lie symmetries and higher order adiabatic invariants of a mechanical system, the perturbation of Lie symmetries for the system with the action of small disturbance is investigated, the adiabatic invariants of generalized Hojman type for the system are directly obtained, the conditions for existence of the adiabatic invariants and their forms are proved. Finally an example is presented to illustrate these results.  相似文献   

17.
We analyze relations between BPS degeneracies related to Labastida-Mariño-Ooguri-Vafa (LMOV) invariants and algebraic curves associated to knots. We introduce a new class of such curves, which we call extremal A-polynomials, discuss their special properties, and determine exact and asymptotic formulas for the corresponding (extremal) BPS degeneracies. These formulas lead to nontrivial integrality statements in number theory, as well as to an improved integrality conjecture, which is stronger than the known M-theory integrality predictions. Furthermore, we determine the BPS degeneracies encoded in augmentation polynomials and show their consistency with known colored HOMFLY polynomials. Finally, we consider refined BPS degeneracies for knots, determine them from the knowledge of super-A-polynomials, and verify their integrality. We illustrate our results with twist knots, torus knots, and various other knots with up to 10 crossings.  相似文献   

18.
A spider is an axiomatization of the representation theory of a group, quantum group, Lie algebra, or other group or group-like object. It is also known as a spherical category, or a strict, monoidal category with a few extra properties, or by several other names. A recently useful point of view, developed by other authors, of the representation theory of sl(2) has been to present it as a spider by generators and relations. That is, one has an algebraic spider, defined by invariants of linear representations, and one identifies it as isomorphic to a combinatorial spider, given by generators and relations. We generalize this approach to the rank 2 simple Lie algebras, namelyA 2,B 2, andG 2. Our combinatorial rank 2 spiders yield bases for invariant spaces which are probably related to Lusztig's canonical bases, and they are useful for computing quantities such as generalized 6j-symbols and quantum link invariants. Their definition originates in definitions of the rank 2 quantum link invariants that were discovered independently by the author and Francois Jaeger.The author was supported by an NSF Postdoctoral Fellowship, grant #DMS-9107908.  相似文献   

19.
We construct noncommutative Donaldson-Thomas invariants associated with abelian orbifold singularities by analyzing the instanton contributions to a six-dimensional topological gauge theory. The noncommutative deformation of this gauge theory localizes on noncommutative instantons which can be classified in terms of three-dimensional Young diagrams with a colouring of boxes according to the orbifold group. We construct a moduli space for these gauge field configurations which allows us to compute its virtual numbers via the counting of representations of a quiver with relations. The quiver encodes the instanton dynamics of the noncommutative gauge theory, and is associated to the geometry of the singularity via the generalized McKay correspondence. The index of BPS states which compute the noncommutative Donaldson-Thomas invariants is realized via topological quantum mechanics based on the quiver data. We illustrate these constructions with several explicit examples, involving also higher rank Coulomb branch invariants and geometries with compact divisors, and connect our approach with other ones in the literature.  相似文献   

20.
Rational solutions of the generalized second Painlevé hierarchy are classified. Representation of the rational solutions in terms of special polynomials, the generalized Yablonskii-Vorob'ev polynomials, is introduced. Differential-difference relations satisfied by the polynomials are found. Hierarchies of differential equations related to the generalized second Painlevé hierarchy are derived. One of these hierarchies is a sequence of differential equations satisfied by the generalized Yablonskii-Vorob'ev polynomials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号