共查询到19条相似文献,搜索用时 62 毫秒
1.
提出一种基于粒子群算法的最小二乘支持向量机(PSO-LS-SVM)方法,用于建立红花提取过程关键质控指标的定量分析模型.近红外光谱数据经波段选择、预处理和主成分分析(降维)后,利用粒子群优化(PSO)算法对最小二乘支持向量机算法中的参数进行优化,然后使用最优参数建立固含量和羟基红花黄色素A(HSYA)浓度的定量校正模型.将校正结果与偏最小二乘法回归(PLSR)和BP神经网络(BP-ANN)比较,并将所建的3个模型用于红花提取过程未知样本的预测.结果表明,BP-ANN校正结果优于PSO-LS-SVM和PLSR,但是对验证集和未知样品集的预测能力较差,而PSO-LS-SVM和PLSR模型的校正、验证结果相近,相关系数均大于0.987,RMSEC和RMSEP值相近且小于0.074,RPD值均大于6.26,RSEP均小于5.70%.对于未知样品集,pSO-LS-SVM模型的RPD值大于8.06,RMSEP和RSEP值分别小于0.07%和5.84%,较BP-ANN和PLSR模型更低.本研究所建立的PSO-LS-SVM模型表现出较好的模型稳定性和预测精度,具有一定的实践意义和应用价值,可推广用于红花提取过程的近红外光谱定量分析. 相似文献
2.
基于局部最小二乘支持向量机的光谱定量分析 总被引:1,自引:0,他引:1
提出了一种基于局部最小二乘支持向量机(LSSVM)的回归方法,以克服待测参数和光谱数据间的非线性。本方法首先通过欧式距离选取局部训练样本子集,然后利用该子集建立LSSVM校正模型。由于每个测试样本建模时要选取不同的训练样本,因此提出相对距离的概念用来改进高斯核函数,使LSSVM的参数对于不同的训练样本具有自调整功能。针对一批汽油样本的实验结果表明,本方法的预测精度优于常见的局部线性建模方法和全局建模方法。 相似文献
3.
研究了近红外光谱技术快速检测红曲菌固态发酵过程参数水分含量和pH值的可行性。针对传统基于间隔策略波长选择方法忽略非线性因素的缺点,采用一种基于最小二乘支持向量机(Least squares support vector machines,LS-SVM)非线性模型的波长筛选算法:联合区间最小二乘支持向量机(Synergy interval least squares support vector machines,siLS-SVM),并将新算法与相关系数法、iPLS算法、siPLS算法对比。实验结果显示,联合siLS-SVM算法和LS-SVM模型取得了最好的预测效果,水分含量、pH值的预测集相关系数(Rp)分别为0.962 1、0.976 1,预测均方根误差(RMSEP)分别为0.012 9、0.145 2,表明模型具有较好的拟合度和预测性能。应用近红外光谱法进行红曲菌固态发酵过程的水分含量和pH值的快速检测可行,该方法为进一步实现其过程参数的在线检测及发酵条件优化提供了技术基础。 相似文献
4.
研究了近红外光谱技术快速检测红曲菌固态发酵过程参数水分含量和pH值的可行性。针对传统基于间隔策略波长选择方法忽略非线性因素的缺点,采用一种基于最小二乘支持向量机(Least squares support vector machines,LS-SVM)非线性模型的波长筛选算法:联合区间最小二乘支持向量机(Synergy interval least squares support vector machines,siLS-SVM),并将新算法与相关系数法、iPLS算法、siPLS算法对比。实验结果显示,联合siLS-SVM算法和LS-SVM模型取得了最好的预测效果,水分含量、pH值的预测集相关系数(R p)分别为0.962 1、0.976 1,预测均方根误差(RMSEP)分别为0.012 9、0.145 2,表明模型具有较好的拟合度和预测性能。应用近红外光谱法进行红曲菌固态发酵过程的水分含量和pH值的快速检测可行,该方法为进一步实现其过程参数的在线检测及发酵条件优化提供了技术基础。 相似文献
5.
6.
复杂样品近红外光谱定量分析模型的构建方法 总被引:3,自引:0,他引:3
针对复杂样品近红外光谱分析中校正集的设计问题, 探讨了标准样品参与复杂样品建模的可行性. 通过标准样品和复杂基质样品共同构建的偏最小二乘(PLS)模型, 考察了波段筛选和建模参数对预测结果的影响. 结果表明, 采用PLS方法建立定量模型时, 校正集样品性质应该尽量与预测集样品相似, 当样品的性质相差较大时, 适当增加校正集样品的差异性可使模型具有更强的预测能力. 同时, 波段优选对提高预测结果的准确性具有重要的意义. 相似文献
7.
一种基于最小二乘支持向量机算法的近红外光谱判别分析方法 总被引:12,自引:0,他引:12
将最小二乘支持向量机(LSSVM)用于近红外(NIR)光谱分析,建立一种新型的NIR光谱快速鉴别方法。以丹参药材道地性鉴别为例,对其NIR漫反射光谱进行主成分分析后,运用LSSVM法建立NIR光谱非线性分类模型,对丹参药材道地性进行快速鉴别。将本方法与经典SVM和BP神经网络法相比较,结果表明,本法判别准确率高,计算时间少,可推广应用于中药等天然产物质量快速鉴别。 相似文献
8.
为了提高油页岩含油率近红外光谱分析建模的预测精度和稳定性,开展了基于最小二乘支持向量机(LS-SVM)建模方法的对比研究.采用主成分-马氏距离(PCA-MD)和基于蒙特卡洛采样(MCS)2种方法进行了奇异样本的检测,采用径向基核函数的LS-SVM、偏最小二乘(PLS)和反向传播神经网络(BPANN)3种方法进行建模方法对比.结果表明,对于64个油页岩岩芯样本,与PCA-MD方法相比,采用MCS方法剔除奇异样本后所建PLS模型的预测精度提高了28%.对于MCS方法剔除奇异样本后的58个样品,采用KennardStone法划分了44个样品的校正集和14个样品的预测集,采用2阶导数和标准化预处理方法,建立了100个LS-SVM的校正模型,模型的预测决定系数R2平均值达到0.90以上,高于PLS和BPANN模型的对应值;且R2的变化量(0.02)小于BPANN模型的对应值(0.32).因此,MCS奇异样本检测结合LS-SVM方法可提高油页岩含油率样本建模的精度和稳定性. 相似文献
9.
基于近红外技术快速无损分析整粒棉籽中的脂肪酸含量 总被引:4,自引:0,他引:4
应用近红外光谱技术可以实现整粒带壳作物种子中脂肪酸含量的快速、无损分析。以385份棉花种子为实验材料,应用线性的偏最小二乘(PLS)和非线性的最小二乘支持向量机(LS-SVM)方法,结合蒙特卡罗无信息变量消除法(MC-UVE),构建整粒棉籽中脂肪酸含量的近红外校正模型。结果表明,基于变量选择的LS-SVM模型具有最佳的预测性能,其棕榈酸、硬脂酸、油酸、亚油酸、饱和脂肪酸和不饱和脂肪酸含量的近红外校正模型的相关系数R2分别为0.863,0.881,0.843,0.806,0.894和0.917,剩余预测偏差RPD分别为2.669,2.880,2.508,2.202,3.023和3.473。本方法省略了种子的粉碎过程,MC-UVE方法有助于提高校正模型的稳健性和精确度。 相似文献
10.
本文用近红外光谱结合最小二乘双胞胎支持向量机(LSTSVM)算法建立了烟叶等级分类模型。从三个等级共210个烟叶样品中,取出120个样品作为建模集,剩余90个样品作为预测集。为了建立最优模型,对光谱预处理方法和模型参数进行筛选优化,最优模型对预测集样品的平均识别率为95.56%,结果表明该方法可以作为烟叶等级分类的一种有效方法。此外,将该算法与SIMCA、PLS-DA、SVM等三种常见的模式识别算法进行了比较,结果表明基于样品的原始光谱,同等条件下,LSTSVM算法的预测效果优于其他三种算法。 相似文献
11.
烟草灰分、总挥发酸和总挥发碱的近红外光谱分析 总被引:2,自引:0,他引:2
应用偏最小二乘法(PLS)结合近红外光谱(NIR)对烟草灰分(ash)、总挥发酸(TVA)和总挥发碱(TVB)建立校正模型。烟草灰分、总挥发酸和总挥发碱模型相关系数分别为0.97312、0.96220和0.98050;均方预测残差(RMSECV)分别为0.41227、0.00688和0.09790;预测范围分别为1.74~31.31、0.0570~0.2336和0.042~1.136;通过对模型进行t-检验,在显著性水平大于0.05的条件下,其预测结果与行业标准方法的测定结果对比,结果令人满意。 相似文献
12.
This study aims to establish a rapid quantitative analysis method for biochar based on near infrared spectroscopy (NIRS) technology. Near infrared spectra of 163 samples in the 10000–3800 cm–1 (1000–2632 nm) range were collected, and the contents of fixed carbon (FC), volatile matter (VM) and ash of samples were also analyzed. A partial least square (PLS) model for FC, VM and Ash was established after the model spectral ranges were optimized, the optimal factors were determined, and the raw spectra were pretreated by multiple scatter correction and second derivative (MSC + SD) method. Finally, the prediction performance of predictive model was evaluated. The results showed that the PLS model had a good prediction ability, and the predicted coefficient R2p of actual values vs prediction values for FC, VM and ash were 0.9423, 0.9517 and 0.9265, respectively. Root mean square error of prediction (RMSEP) was 0.1074, 0.1201 and 0.1243, and ratios of prediction to deviation (RPD) were 3.51, 4.28 and 2.03, respectively. The PLS model had good accuracy and precision for both of FC and VM, and could be used as a quantitative method for FC and VM contents analysis. Nevertheless, PLS model need to improve the precision for Ash analysis according to RPD value. This method provides a fast and effective technical means for the quantitative analysis of biochar components. 相似文献
13.
针对ER型动力元件,阐述了含ER技术的机械系统控制方程的建立方法,运用控制理论建立了其状态方程.同时,对其进行了一般性分析及参数优化设计.发现电流变动力元件可以很简单地依靠调整工作位置来改善元件的动态性能.ER型流体控制元件属典型阻尼元件. 相似文献
14.
将序贯为九论优化法,结合采用约束背影双线性比模型用于多组分“灰色”体系同时测定,且对SNTO的收缩比和收敛判据进行了改进。结果表明,SNTO法是一种实用的全局优化方法,收缩比和收敛判据的改进可大大缩短计算时间。 相似文献
15.
近红外光谱分辨率对定量分析的影响 总被引:9,自引:0,他引:9
利用近红外光谱建立了多组分混合物中对乙酰氨基苯酚和乙水杨胺的定量分析模型。定量模型可以快速准确地测定混合物中对乙酰氨基苯酚和乙水杨胺的含量。研究发现,光谱分辨率对定量分析模型有重要影响。以光谱分辨率4cm-1获得的光谱数据建立的对乙酰氨基苯酚定量模型,其校正集回归系数达到0·9992;其标准偏差为0.2120;同时模型的验证集回归系数为0.9996,而标准偏差达到0.1848。以分辨率1cm-1和8cm-1收集的光谱为基础获得的定量模型,其预测能力呈现不同程度下降趋势。研究结果表明,针对具体样品的特定组分,需要选择合适的光谱分辨率,进而获得最佳的定量分析结果。 相似文献
16.
利用近红外光谱技术对食用植物油中反式脂肪酸(Trans fatty acids,TFA)含量进行快速定量检测,并通过波段选择、预处理方法、变量筛选及建模方法对TFA含量预测模型进行优化.采用AntarisⅡ傅里叶变换近红外光谱仪在4000~10000 cm-1光谱范围采集98个食用植物油样本的近红外透射光谱,然后采用气相色谱法测定TFA的真实含量.首先,对样本原始光谱进行波段、预处理方法优选;在此基础上,采用竞争自适应重加权法(Competitive adaptive reweighted sampling,CARS)筛选TFA相关的重要变量,最后应用主成分回归、偏最小二乘和最小二乘支持向量机方法分别建立食用植物油中TFA含量的预测模型.研究结果表明,近红外光谱技术检测食用植物油中的TFA含量是可行的,优化后的最佳预测模型的校正集和预测集R2分别为0.992和0.989,RMSEC和RMSEP分别为0.071%和0.075%.最佳预测模型所用的变量仅26个,占全波段变量的0.854%.此外,与全波段偏最小二乘预测模型相比,其预测集R2由0.904上升为0.989,RMSEP由0.230%下降为0.075%.由此表明,模型优化非常必要,CARS能有效筛选TFA相关的重要变量,极大减少建模变量数,从而简化预测模型,并较大提高预测模型的精度和稳定性. 相似文献
17.
近红外光谱技术结合主成分分析法用于子宫内膜癌的诊断 总被引:3,自引:0,他引:3
应用近红外光谱技术结合化学计量学方法研究了子宫内膜癌组织近红外光谱特征提取和早期诊断的可行性. 测定了154 例子宫内膜组织切片的近红外光谱, 选取适宜的波段和光谱预处理方法进行主成分分析, 很好地区分了癌变、增生和正常子宫内膜组织切片, 并且分辨出处于不同分化期的组织切片, 为子宫内膜癌的早期诊断提供了可靠依据. 该法快速、简便, 有望发展成为一种新型的肿瘤无创诊断方法. 相似文献
18.
19.
近红外光谱在品质分析和定量分析中的应用 总被引:11,自引:1,他引:11
主要介绍近红外光谱在品质分析和定量分析中的一些应用,作为一种简单、快速、无损的检测手段,近红外光谱在鉴定原料的真伪、原料中有效成分的含量、有毒组分的识别等方面具有独特的效果。因此它在食品、药品、化工产品等领域得到了广泛应用。 相似文献