首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal and molecular structures of the title compounds were determined by X-ray diffraction technique from diffractometer intensity measurements. It has been found that two homologous disulfides, bis(dimethoxythiophosphoryl) disulfide 1 and bis(dineopentoxythiophosphoryl) disulfide 2 , form different molecular and crystal structures with space groups C2/c and P&1macr;, respectively. These results were confirmed by 31P CP MAS NMR studies, which showed that under favorable conditions the solid state NMR may lead to determination of the number of crystallographically unique phosphorus atoms. Moreover, the variation of the disulfide S–S bond length versus torsional P–S–S–P angles was observed.  相似文献   

2.
Density functional theory (DFT) has been applied to study the conformational dependence of 31P chemical shift tensors in B-DNA. The gg and gt conformations of backbone phosphate groups representing BI- and BII-DNA have been examined. Calculations have been carried out on static models of dimethyl phosphate (dmp) and dinucleoside-3',5'-monophosphate with bases replaced by hydrogen atoms in vacuo as well as in an explicit solvent. Trends in 31P chemical shift anisotropy (CSA) tensors with respect to the backbone torsion angles alpha, zeta, beta, and epsilon are presented. Although these trends do not change qualitatively upon solvation, quantitative changes result in the reduction of the chemical shift anisotropy. For alpha and zeta in the range from 270 degrees to 330 degrees and from 240 degrees to 300 degrees , respectively, the delta22 and delta33 principal components vary within as much as 30 ppm, showing a marked dependence on backbone conformation. The calculated 31P chemical shift tensor principal axes deviate from the axes of O-P-O bond angles by at most 5 degrees . For solvent models, our results are in a good agreement with experimental estimates of relative gg and gt isotropic chemical shifts. Solvation also brings the theoretical deltaiso of the gg conformation closer to the experimental gg data of barium diethyl phosphate.  相似文献   

3.
The organisation and phase transition of single crystals containing three isostructural bis[6-O,6-O'-(1,2:3,4-diisopropylidene-alpha- D-galactopyranosyl)thiophosphoryl] dichalcogenide derivatives: disulfide 1, diselenide 2 and mixed seleno-sulfide 3, was deduced upon 1D, 2D and variable temperature 31P NMR experiments.  相似文献   

4.
The interactions of synthetic chalcocite surfaces with diethyldithiophosphate, potassium salt, K[S2P(OC2H5)2], were studied by means of 31P cross-polarization/magic angle spinning (CP/MAS) NMR spectroscopy and scanning electron microscopy (SEM). To identify the species formed on the Cu2S surfaces, a polycrystalline {CuI6[S2P(OC2H5)2]6} cluster was synthesized and analyzed by SEM, powder X-ray diffraction techniques and solid-state 31P CP/MAS NMR and static 65Cu NMR spectroscopy. 31P chemical shift anisotropy (CSA) parameters, delta(cs) and eta(cs), were estimated and used for assigning the bridging type of diethyldithiophosphate ligands in the {CuI6[S2P(OC2H5)2]6} cluster. The latter data were compared to 31P CSA parameters estimated from the spinning sideband patterns in 31P NMR spectra of the collector-treated mineral surfaces: formation of polycrystalline {CuI6[S2P(OC2H5)2]6} on the Cu2S surfaces is suggested. The second-order quadrupolar line shape of 65Cu was simulated, and the NMR interaction parameters, CQ and etaQ, for the copper(I) diethyldithiophosphate cluster were obtained.  相似文献   

5.
The phosphorus chemical shift (CS) tensors of several ruthenium carbonyl compounds containing a phosphido ligand, micro), bridging a Ru [bond] Ru bond were characterized by solid-state (31)P NMR spectroscopy. As well, an analogous osmium compound was examined. The structures of most of the clusters investigated have approximate local C(2v) symmetry about the phosphorus atom. Compared to the "isolated" PH(2)(-) anion, the phosphorus nucleus of a bridging phosphido ligand exhibits considerable deshielding. The phosphorus CS tensors of most of the compounds have spans ranging from 230 to 350 ppm and skews of approximately zero. Single-crystal NMR was used to investigate the orientation of the phosphorus CS tensors for two of the compounds, Ru(2)(CO)(6)(mu(2)-C [triple bond] C [bond] Ph)(mu(2)-PPh(2)) and Ru(3)(CO)(9)(mu(2)-H)(mu(2)-PPh(2)). The intermediate component of the phosphorus CS tensor, delta(22), lies along the local C(2) axis in both compounds. The least shielded component, delta(11), lies perpendicular to the Ru [bond] P [bond] Ru plane while the most shielded component, delta(33), lies perpendicular to the C [bond]P [bond] C plane. The orientation of the phosphorus CS tensor for a third compound, Ru(2)(CO)(6)(mu(2)-PPh(2))(2), was investigated by the dipolar-chemical shift NMR technique and was found to be analogous, suggesting it to be the same in all compounds. Ab initio calculations of phosphorus magnetic shielding tensors have been carried out and reproduce the orientations found experimentally. The orientation of the CS tensor has been rationalized using simple frontier MO theory. Splittings due to (99,101)Ru [bond] (31)P spin-spin coupling have been observed for several of the complexes. A rare example of (189)Os [bond] (31)P spin-spin splittings is observed in the (31)P MAS NMR spectrum of the osmium cluster, where (1)J((189)Os, (31)P) is 367 Hz. For this complex, the (189)Os nuclear quadrupolar coupling constant is on the order of several hundred megahertz.  相似文献   

6.
The chemically active phosphorus surface sites defined as PO(x), PO(x)H, and PO(x)H2, where x = 1, 2, or 3, and the bulk phosphorus groups of PO4(3-) at synthetic carbonate-free fluorapatite (Ca5(PO4)3F) have been studied by means of single-pulse 1H,31P, and 31P CP MAS NMR. The changes in composition and relative amounts of each surface species are evaluated as a function of pH. By combining spectra from single-pulse 1H and 31P MAS NMR and data from 31P CP MAS NMR experiments at varying contact times in the range 0.2-3.0 ms, it has been possible to distinguish between resonance lines in the NMR spectra originating from active surface sites and bulk phosphorus groups and also to assign the peaks in the NMR spectra to the specific phosphorus species. In the 31P CP MAS NMR experiments, the spinning frequency was set to 4.2 kHz; in the single-pulse 1H MAS NMR experiments, the spinning frequency was 10 kHz. The 31P CP MAS NMR spectrum of fluorapatite at pH 5.9 showed one dominating resonance line at 2.9 ppm assigned to originate from PO4(3-) groups and two weaker shoulder peaks at 5.4 and 0.8 ppm which were assigned to the unprotonated PO(x) (PO, PO2-, and PO3(2-)) and protonated PO(x)H (PO2H and PO3H-) surface sites. At pH 12.7, the intensity of the peak representing unprotonated PO(x) surface sites has increased 1.7% relative to the bulk peak, while the intensity of the peaks of the protonated species PO(x)H have decreased 1.4% relative to the bulk peak. At pH 3.5, a resonance peak at -4.5 ppm has appeared in the 31P CP MAS NMR spectrum assigned to the surface species PO(x)H2 (PO3H2). The results from the 1H MAS and 31P CP MAS NMR measurements indicated that H+, OH-, and physisorbed H2O at the surface were released during the drying process at 200 degrees C.  相似文献   

7.
《Polyhedron》2001,20(15-16):1907-1913
Treatment of bis(diphenylphosphino)methane disulfide (dppmS) or bis(diphenylphosphino)ethane disulfide (dppeS) with diiodine in dichloromethane yields the adducts dppmS·I4 1 and dppeS·I4 2, respectively, whose structures have been solved by X-ray crystallography. Compounds 1 and 2 consist of discrete molecular units containing bent PSI and linear S⋯II geometries that can be interpreted in terms of donation of electron density from sulfur to diiodine. Consistent with this interpretation, the PS bonds are lengthened compared to the unco-ordinated phosphine sulfides, and the II bonds are lengthened compared to unco-ordinated diiodine. Both compounds can therefore be described as ‘charge-transfer’ complexes. The two S⋯II moieties in 1 are inequivalent having markedly different bond lengths and angles. In 2 both S⋯II moieties are identical. The structural features of 1 and 2 are in accordance with Raman and 31P CP MAS NMR data.  相似文献   

8.
The phosphadiazonium cation [MesNP](+) reacts quantitatively with the fluorenylide anion, MesNH(2), and MesOH (Mes = 2,4,6-tri-tert-butylphenyl), resulting in formal insertion of the N-P moiety into the H-Y (Y = C, N, O) bonds. Specifically, reaction of MesNPCl with fluorenyllithium gives the aminofluorenylidenephosphine [crystal data: C(31)H(38)NP, monoclinic, P2(1)/c, a = 9.568(8) ?, b = 24.25(2) ?, c = 11.77(1) ?, beta = 101.38(8) degrees, Z = 4]. Similarly, reaction of [MesNP][GaCl(4)] with MesNH(2) gives the diaminophosphenium salt [MesN(H)PN(H)Mes][GaCl(4)] [crystal data: C(36)H(60)Cl(4)GaN(2)P, monoclinic, C2/c, a = 24.921(2) ?, b = 10.198(4) ?, c = 16.445(2) ?, beta = 93.32(1) degrees, Z = 4], and reaction with MesOH gives the first example of an aminooxyphosphenium salt [MesN(H)POMes][GaCl(4)]. It is proposed that the reactions involve nucleophilic attack at phosphorus followed by a 1,3-hydrogen migration from Y to N. Experimental evidence for the formation of sigma-complex intermediates is provided by the isolation of [MesNP-PPh(3)][SO(3)CF(3)] [crystal data: C(37)H(44)F(3)NO(3)P(2)S, triclinic, P&onemacr;, a = 10.663(1) ?, b = 19.439(1) ?, c = 10.502(1) ?, alpha = 103.100(7) degrees, beta = 113.311(7) degrees, gamma = 93.401(7) degrees, Z = 2]. As part of the unequivocal characterization of the aminooxyphosphenium salt, detailed solid-state (31)P NMR studies and GIAO calculations on the phosphenium cations have been performed. Contrary to popular belief, the phosphorus shielding in dicoordinate cations is not caused by the positive charge but results from efficient mixing between the phosphorus lone pair and pi orbitals.  相似文献   

9.
Dithiophosphates are used in many different industrial applications. To explain their functions and properties in these applications, a fundamental understanding on a molecular level is needed. Potassium O, O'-Dibutyldithiophosphate and its anion have been investigated by means of a combination of DFT and (31)P CP/MAS NMR and infrared spectroscopy. Several low-energy conformations were studied by DFT. Three different conformations with significantly different torsion angles of the O-C bond relative to the O-P-O plane were selected for further studies of infrared frequencies and (31)P NMR chemical-shift tensors. A good agreement between theoretical and experimental results was obtained, especially when the IR spectra or (31)P chemical shift tensor parameters of all three conformations were added, indicating that, because of the low energy difference between the conformations, the molecules are rapidly fluctuating between them.  相似文献   

10.
张殿坤 《化学学报》1987,45(10):1014-1019
The 1H, 31P, and 13C NMR parameters of 1,3,2-benzoxazaphosphorin-4-one derivatives I [R = heterocyclyl; R1 = OEt, NMe2, (ClCH2CH2)2N, (ICH2CH2)2N; X = O, S] have been studied. Effects of chiral phosphorus atom on 1H spectra of these compounds are discussed.  相似文献   

11.
The annulenium ions of protonation, the two-electron oxidation dications, and the two-electron reduction dianions derived from dihydro- and dimethyldihydro derivatives (cis and trans) of dicyclopenta[ef,kl]heptalene (azupyrene) (1) and dicyclohepta[ed,gh]pentalene (2), which are the nonalternant isomers of pyrene, were studied by density functional theory (DFT) at the B3LYP/6-31G(d), 6-31+G(d,p), or 6-31++G(d,p) levels. Charge delocalization modes in the energetically most favored annulenium ions, as well as in the singlet and triplet dications and dianions, were assessed based on gauge-including atomic orbital (GIAO) Deltadelta](13)C values and via changes in natural population analysis (NPA) charges. Relative aromaticity/antiaromaticity in the annulenes were gauged via nucleus-independent chemical shift (NICS) and DeltaNICS. Annulenium ions of monoprotonation, the dications, and dianions derived from bismethano- and propanediylidene [14]annulenes were also studied by DFT for comparison with the cis-dihydro isomers derived from . Computed GIAO NMR data and the optimized geometries were compared with the experimental data when available, and the optimized geometries were compared with the X-ray data if known. A basis-set dependency study of the computed GIAO chemical shifts was also undertaken. The present DFT work represents the first detailed comparative theoretical study of charged annulenes derived from the dihydro derivatives of and .  相似文献   

12.
[graphs: see text] QM GIAO calculations of 13C and 1H chemical shift values of the ArCH2Ar group have been performed, using the hybrid DFT functional MPW1PW91 and the 6-31G(d,p) basis set, on some representative calixarenes and on a series of simplified calixarene models allowing derivation of chemical shift surfaces versus phi and chi dihedral angles. A good reproduction of experimental data was obtained. The applicability of chemical shift surfaces in the study of calixarene conformational features is illustrated.  相似文献   

13.
A complementary approach for studying structural details of complex solid materials formed by symmetrical and unsymmetrical dichalcogenides, which employs both X-ray diffraction (XRD) and solid-state NMR (SS NMR), is presented. The new diagnostic technique allows reversible crystallographic space group change and very subtle distortion of host geometry to be followed during guest migration in the crystal lattice. Bis[6-O,6-O'-(1,2:3,4-diisopropylidene-alpha-D-galactopyranosyl)]thiophosphoryl selenenyl sulfide, a representative of wheel-and-axle host (WAAH) molecules, can be synthesized in the solid state by grinding and gentle heating of disulfide 1 and diselenide 2. Full characterization of disulfide 1 in the solid phase has been reported (J. Org. Chem. 1995, 60, 2549). In the current work, the synthesis and both XRD and SS NMR studies of the isostructural diselenide substrate 2 are presented. A (31)P cross polarization magic angle spinning experiment is employed to follow the progress of synthesis of selenenyl sulfide 3 in the solid state. It is concluded that selenenyl sulfide exists in equilibrium with disulfide and diselenide in a 1:1:1 ratio in both the liquid and the powdered solid. A mixture of isostructural dichalcogenides crystallized from different solvents form three-component host-guest inclusion complexes with columnar architecture. In the host-guest complex of diselenide 2 with toluene (space group C2), columns of host molecules are in parallel orientations along all the axes, whereas in the structures of diselenide 2 with propan-2-ol and propan-1-ol (space group P3 2), the columns of host molecules lay along the 3-fold symmetry axis. Thermal processes effecting structural changes in the host lattice and the kinetics of reversible guest molecule diffusion were investigated using SS NMR spectroscopy. Finally, the Se/S scrambling phenomenon and limitations in the X-ray structure refinement of organic compounds containing selenium and sulfur in chains are discussed.  相似文献   

14.
Assignments of the protolytic speciation at the calcium hydroxyl surface sites of synthetic fluorapatite and the chemical interactions between fluorapatite-maghemite and fluorapatite-Fe2+ ions have been studied by means of 1H and 31P single-pulse and 31P CP MAS NMR. Three possible forms of calcium hydroxyl surface sites have been suggested and assigned to [triple bond] CaOH, [triple bond]Ca(OH)2-, and [triple bond]CaOH2+, and their mutual ratios were found to vary as a function of pH. Due to their paramagnetic properties, iron species and Fe2+ ions adsorbed at the fluorapatite surface display a broad spinning sideband manifold in the single-pulse 31P MAS NMR spectra. The resonance lines in the 31P CP MAS NMR spectra originating from the bulk phosphate groups PO4(3-) and phosphorus surface sites [triple bond]POx and [triple bond]POxH decrease with increasing Fe2+ ion adsorption. When iron species originating from maghemite are adsorbed at the fluorapatite surface, no 31P NMR signal is detected, which supports the hypothesis that surface reactions occur between the phosphorus surface sites of fluorapatite and iron species.  相似文献   

15.
Foucault HM  Bryce DL  Fogg DE 《Inorganic chemistry》2006,45(25):10293-10299
Reaction of RuCl2(PPh3)3 with LiNN' (NN' = 2-[(2,6-diisopropylphenyl)imino]pyrrolide) affords a single product, with the empirical formula RuCl[(2,6-iPr2C6H3)N=CHC4H3N](PPh3)2. We identify this species as a sigma-pyrrolato complex, [Ru(NN')(PPh3)2]2(mu-Cl)2 (3b), rather than mononuclear RuCl(NN')(PPh3)2 (3a), on the basis of detailed 1D and 2D NMR characterization in solution and in the solid state. Retention of the chelating, sigma-bound iminopyrrolato unit within 3b, despite the presence of labile (dative) chloride and PPh3 donors, indicates that the chelate effect is sufficient to inhibit sigma --> pi isomerization of 3b to a piano-stool, pi-pyrrolato structure. 2D COSY, SECSY, and J-resolved solid-state 31P NMR experiments confirm that the PPh3 ligands on each metal center are magnetically and crystallographically inequivalent, and 31P CP/MAS NMR experiments reveal the largest 99Ru-31P spin-spin coupling constant (1J(99Ru,31P) = 244 +/- 20 Hz) yet measured. Finally, 31P dipolar-chemical shift spectroscopy is applied to determine benchmark phosphorus chemical shift tensors for phosphine ligands in hexacoordinate ruthenium complexes.  相似文献   

16.
[structure: see text] The sterically bulky tert-butyl group occupies an apical position in trigonal bipyramidal phosphorus in the compound [CH2(6-t-Bu-4-Me-C6H2O)2]P(t-Bu)(1,2-O2C6Cl4) in contrast to the occupation of an equatorial position by the small methyl group in [CH2(6-t-Bu-4-Me-C6H2O)2]P(Me)(1,2-O2C6Cl4); this observation contradicts the familiar "apicophilicity rules" for trigonal bipyramidal phosphorus. Low-temperature solution 31P NMR spectra of [CH2(6-t-Bu-4-Me-C6H2O)2]P(R)(1,2-O2C6Cl4) (R = Me, Et, and n-Bu) show the presence of more than two isomers.  相似文献   

17.
In this study, comparative analysis of calculated (GIAO method, DFT level) and experimental 31P NMR shifts for a wide range of model palladium complexes showed that, on the whole, the theory reproduces the experimental data well. The exceptions are the complexes with the P=O phosphorus, for which there is a systematic underestimation of shielding, the value of which depends on the flexibility of the basis sets, especially at the geometry optimization stage. The use of triple-ζ quality basis sets and additional polarization functions at this stage reduces the underestimation of shielding for such phosphorus atoms. To summarize, in practice, for the rapid assessment of 31P NMR shifts, with the exception of the P=O type, a simple PBE0/{6-311G(2d,2p); Pd(SDD)}//PBE0/{6-31+G(d); Pd(SDD)} approximation is quite acceptable (RMSE = 8.9 ppm). Optimal, from the point of view of “price–quality” ratio, is the PBE0/{6-311G(2d,2p); Pd(SDD)}//PBE0/{6-311+G(2d); Pd(SDD)} (RMSE = 8.0 ppm) and the PBE0/{def2-TZVP; Pd(SDD)}//PBE0/{6-311+G(2d); Pd(SDD)} (RMSE = 6.9 ppm) approaches. In all cases, a linear scaling procedure is necessary to minimize systematic errors.  相似文献   

18.
Liu CW  Hung CM  Santra BK  Wang JC  Kao HM  Lin Z 《Inorganic chemistry》2003,42(25):8551-8556
The cluster (Cu8(mu8-Se)[S2P(OEt)2]6)0.54(Cu6[S2P(OEt)2]6)0.46 (2) was prepared in 78% yield from the reaction of Cu8(Se)[Se2P(OPr)2]6 (1) and NH4S2P(OEt)2 in toluene. The central selenide ion in 2 was characterized by 77Se NMR at delta -976 ppm. The simulated solid-state 31P NMR spectrum shows two components with an intensity ratio close to 55:45. The peak centered at 100.7 ppm is assigned to the 31P nuclei in the hexanuclear copper cluster, and that at 101.1 ppm is due to the octanuclear copper cluster. The single-crystal X-ray diffraction analysis confirms the cocrystallization structures of Cu8(Se)[S2P(OEt)2]6 (54%) and Cu6[S2P(OEt)2]6 (46%) (2: trigonal, space group R3, a=21.0139(13) A, c=11.404(3) A, gamma=120 degrees, Z=3). While the octanuclear copper cluster possesses a 3-fold crystallographic axis which pass through the Cu2, Se, and Cu(2A) atoms, the six copper atoms having the S6 point group symmetry in Cu6[S2P(OEt)2]6 form a compressed octahedron. The Cu8(mu8-Se) cubic core in Cu8(mu8-Se)[S2P(OEt)2]6 is larger in size than the metal core in Cu8(mu8-Se)[Se2P(OPr)2]6 (1) although the bite distance of the Se-containing bridging ligand is larger than that of the S ligand. To understand the nature of the structure contraction of the metal core and metal-mu8-Se interaction, molecular orbital calculations have been carried out at the B3LYP level of density functional theory. MO calculations suggest that Cu-mu8-Se interactions are not very strong and a half bond can be formally assigned to each Cu-mu8-Se bond. Moderate Cu...Cu repulsion exists, and it is the bridging ligands that are responsible for the observed Cu...Cu contacts. Hence, the S-ligating copper clusters have greater Cu...Cu separations because each Cu carries more positive charge in the presence of the more electronegative S-containing ligands.  相似文献   

19.
The results of a systematic solid-state (31)P NMR study of 5-phenyldibenzophosphole, DBP, its chalcogenides, and some of its transition metal complexes are reported. Phosphorus chemical shift tensors have been obtained from (31)P NMR spectra of stationary samples and of samples spinning about the magic angle. The spans of the phosphorus chemical shift tensors for DBP and its chalcogenides are comparable to those of the corresponding compounds of triphenylphosphine; however, the asymmetry of the tensors for the DBP series reflects the reduced local symmetry at phosphorus. For the complexes (DBP)M(CO)(5) and cis-(DBP)(2)M(CO)(4), where M is a group 6 transition metal (Cr, Mo, W), the most shielded component of the phosphorus shift tensor is found to be relatively independent of the metal or complex, delta(33) = -41 +/- 8 ppm, and is thought to lie along or close to the P-M bond axis direction. In contrast, delta(11) and delta(22) show considerable variation but decrease systematically on descending the group from Cr to W. Group 10 metal complexes, (DBP)(2)MX(2), have also been investigated, including several trans geometric isomers of nickel, cis and trans isomers of palladium, and cis isomers of platinum. The phosphorus shift tensors are nonaxially symmetric with spans in the range 50 -150 ppm. The phosphorus shift tensors of the two nonequivalent DBP ligands of (DBP)(2)PtX(2) (X = Cl, Br) exhibit quite different principal components. The intermediate component of the shift tensor is thought to lie along the Pt-P bond in these complexes. Some of the complexes exhibit interesting MAS-frequency-dependent (31)P NMR spectra.  相似文献   

20.
The main factors affecting the accuracy and computational cost of the calculation of 31P NMR chemical shifts in the representative series of organophosphorous compounds are examined at the density functional theory (DFT) and second‐order Møller–Plesset perturbation theory (MP2) levels. At the DFT level, the best functionals for the calculation of 31P NMR chemical shifts are those of Keal and Tozer, KT2 and KT3. Both at the DFT and MP2 levels, the most reliable basis sets are those of Jensen, pcS‐2 or larger, and those of Pople, 6‐311G(d,p) or larger. The reliable basis sets of Dunning's family are those of at least penta‐zeta quality that precludes their practical consideration. An encouraging finding is that basically, the locally dense basis set approach resulting in a dramatic decrease in computational cost is justified in the calculation of 31P NMR chemical shifts within the 1–2‐ppm error. Relativistic corrections to 31P NMR absolute shielding constants are of major importance reaching about 20–30 ppm (ca 7%) improving (not worsening!) the agreement of calculation with experiment. Further better agreement with the experiment by 1–2 ppm can be obtained by taking into account solvent effects within the integral equation formalism polarizable continuum model solvation scheme. We recommend the GIAO‐DFT‐KT2/pcS‐3//pcS‐2 scheme with relativistic corrections and solvent effects taken into account as the most versatile computational scheme for the calculation of 31P NMR chemical shifts characterized by a mean absolute error of ca 9 ppm in the range of 550 ppm. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号