首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
张丽春  李怀繁  赵仁 《物理学报》2010,59(12):8994-8998
在考虑黑洞视界与宇宙视界具有关联性的基础上,证明de Sitter时空的热力学熵为黑洞视界热力学熵与宇宙视界热力学熵之和.给出了考虑两视界具有关联性后的de Sitter时空的热力学特性.研究表明,de Sitter时空的能量上限为纯de Sitter时空能量,deSitter时空的热容量是负的,de Sitter时空一般是量子力学不稳定的.  相似文献   

2.
魏益焕 《物理学报》2019,68(6):60402-060402
本文考虑带有黑洞视界和宇宙视界的Kiselev时空.研究以黑洞视界和宇宙视界为边界的系统的热力学性质.统一地给出了两个系统的热力学第一定律;在黑洞视界半径远小于宇宙视界半径的情况下,近似地计算了通过宇宙视界和黑洞视界的热能.然后,探讨Kiselev时空的物质吸积特性.在吸积能量密度正比于背景能量密度的条件下给出黑洞的吸积率,讨论了黑洞吸积率与暗能量态方程参数的关系.  相似文献   

3.
张丽春  赵仁 《物理学报》2010,59(4):2217-2222
本文延拓Damour-Ruffini方法,研究Kerr-Newman-de Sitter黑洞的Hawking辐射.在保持时空中总能量,总角动量和总电荷守恒的条件下,考虑辐射粒子对时空的反作用与黑洞事件视界和宇宙视界的相互关联后,得到了黑洞辐射谱.此辐射不再是严格的纯热谱与黑洞事件视界和宇宙视界对应Bekenstein-Hawking熵变有关.研究发现其结果仍然符合幺正性原理.同时给出了黑洞Bekenstein-Hawking熵的修正项.使人们对黑洞热辐射的研究有了进一步的认识.  相似文献   

4.
张丽春  赵仁 《中国物理 B》2010,19(4):2217-2222
本文延拓Damour-Ruffini方法,研究Kerr-Newman-de Sitter黑洞的Hawking辐射.在保持时空中总能量,总角动量和总电荷守恒的条件下,考虑辐射粒子对时空的反作用与黑洞事件视界和宇宙视界的相互关联后,得到了黑洞辐射谱.此辐射不再是严格的纯热谱与黑洞事件视界和宇宙视界对应Bekenstein-Hawking熵变有关.研究发现其结果仍然符合幺正性原理. 同时给出了黑洞Bekenstein-Hawking熵的修正项. 使人们对黑洞热辐射的研究有了进一步的认识.  相似文献   

5.
黑洞的普朗克绝对熵公式   总被引:26,自引:1,他引:25       下载免费PDF全文
李传安 《物理学报》2001,50(5):986-989
利用黑洞热力学第一定律和第三定律分别导出黑洞的普朗克绝对熵公式,该公式表明黑洞熵与黑洞视界的全面积成正比.并进一步证明了黑洞的普朗克绝对熵就是经典热力学熵 关键词: 黑洞 视界 视界温度 普朗克绝对熵  相似文献   

6.
采用由广义不确定关系得到的新的态密度方程 ,研究了Schwarzchild deSitter时空背景下黑洞宇宙视界的熵 .利用新的态密度方程 ,克服了用brick wall模型方法计算黑洞熵 ,在消除紫外发散需取截断的不完善之处 ,以此揭示了黑洞熵与其视界面积成正比这一内在联系 ,进一步表明黑洞熵是视界面处量子态的熵  相似文献   

7.
Schwarzschild-de-Sitter黑洞宇宙视界量子态的熵   总被引:1,自引:0,他引:1       下载免费PDF全文
韩亦文  洪云 《物理学报》2004,53(10):3270-3273
采用由广义不确定关系得到的新的态密度方程,研究了Schwarzchild-de-Sitter时空背景下黑洞宇宙视界的熵.利用新的态密度方程,克服了用brick wall模型方法计算黑洞熵,在消除紫外发散需取截断的不完善之处,以此揭示了黑洞熵与其视界面积成正比这一内在联系,进一步表明黑洞熵是视界面处量子态的熵. 关键词: 黑洞 广义不确定关系 态密度 熵  相似文献   

8.
能斯特定理与黑洞的普朗克绝对熵   总被引:18,自引:0,他引:18       下载免费PDF全文
赵峥  朱建阳 《物理学报》1999,48(8):1558-1564
考虑Kerr黑洞内视界处的热性质后,给出了Bekenstein-Smarr公式的新形式,重新定义了黑洞熵.黑洞温度趋于绝对零度时,新定义的黑洞熵一定趋于零.它满足能斯特定理,可视为黑洞的普朗克绝对熵. 关键词:  相似文献   

9.
Nernst定理与Reissner-Nordstrom黑洞Dirac场的熵   总被引:8,自引:0,他引:8       下载免费PDF全文
刘文彪  朱建阳  赵峥 《物理学报》2000,49(3):581-585
把ReissnerNordstrom(RN)黑洞看作是由内、外视界两个热力学系统组成的复合热力学系统.用brickwall方法针对旋标架形式的Dirac方程,分别计算了RN黑洞内、外的Dirac场的自由能和熵,结果发现其熵均分别与内、外视界的面积成正比,并且在采用相同截断因子的条件下是KleinGordon场熵的7/2倍.RN黑洞系统的总熵在考虑内、外视界的共同作用后,其结果确实满足Nernst定理. 关键词:  相似文献   

10.
赵仁  张丽春  胡双启 《物理学报》2006,55(8):3898-3901
将黑洞看作由裸黑洞和二维热力学面(黑洞的视界)组成的正则系综,利用量子统计方法给出黑洞Hawking 辐射的能量谱.找到黑洞辐射温度与熵的关系. 关键词: Hawking辐射 正则系统 量子统计  相似文献   

11.
In this paper we discuss thermodynamics parameters of black hole horizon and cosmological horizon in general high-dimensional space-time. We obtain that the entropy of a cosmological horizon can be described by the Cardy-Verlinde formula. However, the entropy of black hole horizon will be expressed in a form of the Cardy-Verlinde formula, if one adopts the methods given by Abbott and Deser to compute the mass of a black hole in general high-dimensional space-time. Through discussion, relation among various thermodynamics parameters of the black hole in general high-dimensional space-time is given. That is, differential formula of the first law of thermodynamics is obtained. Because we discuss the general high-dimensional space-time, our result has universality. PACS: 04.20.Dw, 97.60.Lf  相似文献   

12.
张丽春  武月琴  赵仁 《中国物理》2004,13(6):974-978
Improving the membrane model by which the entropy of the black hole is studied, we study the entropy of the black hole in the non-thermal equilibrium state. To give the problem stated here widespread meaning, we discuss the (n 2)-dimensional de Sitter spacetime. Through discussion, we obtain that the black hole‘s entropy which contains two horizons (a black hole‘s horizon and a cosmological horizon) in the non-thermal equilibrium state comprises the entropy corresponding to the black hole‘s horizon and the entropy corresponding to the cosmological horizon. Furthermore, the entropy of the black hole is a natural property of the black hole. The entropy is irrelevant to the radiation field out of the horizon. This deepens the understanding of the relationship between black hole‘s entropy and horizon‘s area. A way to study the bosonic and fermionic entropy of the black hole in high non-thermal equilibrium spacetime is given.  相似文献   

13.
In this paper we show that the entropy of a cosmological horizon in 4-dimensional topological Kerr-Newman-de Sitter spaces can be described by the Cardy-Verlinde formula, which is supposed to be an entropy formula of conformal field theory in any number of dimensions. Furthermore, we find that the entropy of a black hole horizon can also be rewritten in terms of the Cardy-Verlinde formula for these black holes in de Sitter spaces, if we use the definition due to Abbott and Deser for conserved charges in asymptotically de Sitter spaces. Such results presume a well-defined dS/CFT correspondence, which has not yet attained the credibility of its AdS analogue.Received: 7 April 2003, Revised: 18 June 2003, Published online: 29 August 2003  相似文献   

14.
The fundamental equation of the thermodynamic system gives the relation between the internal energy, entropy and volume of two adjacent equilibrium states. Taking a higher-dimensional charged Gauss–Bonnet black hole in de Sitter space as a thermodynamic system, the state parameters have to meet the fundamental equation of thermodynamics. We introduce the effective thermodynamic quantities to describe the black hole in de Sitter space. Considering that in the lukewarm case the temperature of the black hole horizon is equal to that of the cosmological horizon, we conjecture that the effective temperature has the same value. In this way, we can obtain the entropy formula of spacetime by solving the differential equation. We find that the total entropy contains an extra term besides the sum of the entropies of the two horizons. The corrected term of the entropy is a function of the ratio of the black hole horizon radius to the cosmological horizon radius, and is independent of the charge of the spacetime.  相似文献   

15.
We generalize the method that is used to study corrections to Cardy-Verlinde formula due to generalized uncertainty principle and discuss corrections to Cardy-Verlinde formula due to generalized uncertainty principle in (anti)-de Sitter space. Because in de Sitter black hole spacetime the radiation temperature of the black hole horizon is different from the one of the cosmological horizon, this spacetime is a thermodynamical non-equilibrium spacetime.  相似文献   

16.
We generalize the method that is used to study corrections to Cardy-Verlinde formula due to generalized uncertainty principle and discuss corrections to Cardy-Verlinde formula due to generalized uncertainty principle in (anti)- de Sitter space. Because in de Sitter black hole spacetime the radiation temperature of the black hole horizon is different from the one of the cosmological horizon, this spacetime is a thermodynamical non-equilibrium spacetime.  相似文献   

17.
From a new perspective, we discuss the thermodynamic entropy of (n+2)-dimensional Reissner-Nordströmde Sitter (RNdS) black hole and analyze the phase transition of the effective thermodynamic system. Considering the correlations between the black hole event horizon and the cosmological horizon, we conjecture that the total entropy of the RNdS black hole should contain an extra term besides the sum of the entropies of the two horizons. In the lukewarm case, the effective temperature of the RNdS black hole is the same as that of the black hole horizon and the cosmological horizon. Under this condition, we obtain the extra contribution to the total entropy. With the corrected entropy, we derive other effective thermodynamic quantities and analyze the phase transition of the RNdS black hole in analogy to the usual thermodynamic system.  相似文献   

18.
In this paper, we have shown that the entropy of the dilaton-axion black hole can be expressed by the Cardy-Verlinde formula. The later is supposed to be an entropy formula of conformal field theory in any dimension. Next we have calculated the first order correction to the Cardy-Verlinde formula in the context of dilaton-axion black hole.  相似文献   

19.
In this paper,we consider(n+1)-dimensional topological dilaton de Sitter black holes with a powerMaxwell field as thermodynamic systems.The thermodynamic quantities corresponding to the black hole horizon and the cosmological horizon are interrelated.Therefore,the total entropy of the space-time should be the sum of the entropies of the black hole horizon and the cosmological horizon plus a correction term which is produced by the association of the two horizons.We analyze the entropic force produced by the correction term at given temperatures,which is affected by the parameters and dimensions of the space-time.It is shown that the change of entropic force with the position ratio of the two horizons in some regions is similar to that of the variation of the Lennard-Jones force with the position of particles.If the effect of entropic force is similar to that of the Lennard-Jones force,and other forces are absent,the motion of the cosmological horizon relative to the black hole horizon should have an oscillating process.The entropic force between the two horizons is probably one of the participants in driving the evolution of the universe.  相似文献   

20.
De Sitter black holes have the black hole horizon and the cosmological horizon, and the thermodynamic quantities on the two horizons all satisfy the first law of thermodynamics. The thermodynamic quantities on the two horizons are not independent but are correlated to each other. Taking de Sitter space-time as thermodynamic system, we investigated the effective thermodynamic quantities of Reissner–Nordström de Sitter black hole surrounded by the quintessence (RN-DSQ). We obtained the effective temperature and entropy of the system by considering the corrections between the black hole horizon and the cosmological horizon. We found that the entropy of the RN-DSQ is in agreement with that of Reissner–Nordström de Sitter black hole. It offers a basis for further studying of the thermodynamic properties of de Sitter space-time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号