首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用自设计的双螺杆结构挤出制备聚乳酸(PLA)/醋酸淀粉(AS)的全生物降解材料,考察材料的AS的含量和取代度对复合材料动态流变性能、机械性能的影响。研究结果表明,AS含量明显影响复合材料的力学性能、复合黏度和储能模量:当AS含量从45%增加到70%,材料的拉伸强度下降,复数黏度和储能模量则提高。随着AS取代度由1.0上升为3.0,复合材料的复数黏度和储能模量下降,拉伸强度由12.0MPa上升为15.5MPa。对复合材料进行电镜扫描分析发现,AS以海岛结构形式分散在PLA的连续相中,取代度2.0的AS与PLA相容性最好,当其质量含量达到70%,材料的拉伸强度仍然不低于10.0MPa,具有较好的机械强度。  相似文献   

2.
Ternary blends of PLA/PBS/CSW with different weight fractions were prepared using a vane extruder. The mechanical properties, morphology, crystallization behavior and thermal stability of the blends were investigated. For the PLA/CSW blend, the tensile strength decreased, the flexural strength and modulus increased compared with pure PLA. For PBS, the addition of CSW had little influence on the mechanical properties. For the ternary blends PLA/PBS/CSW, the tensile strength, flexural strength and modulus decreased compared with pure PLA, while the elongation at break and the impact strength increased significantly. The brittle-ductile transition of the blends took place when the PBS weight fraction reaching 30 wt%. As a soft component in the blends, PBS was beneficial to improve the tensile ductility and the toughness of PLA. SEM measurements reveal that PLA/PBS/CSW blends were immiscible. When the weight fraction of PBS was 50 wt%, significant phase separation was observed, and CSW had preferential location in the PBS phase of the blend. DSC measurement and POM observation reveal that CSW had a heterogeneous nucleation effect on PLA and PBS matrix. The addition of PBS improved the crystallization of PLA and the thermal resistance of the PLA/PBS/CSW blends significantly.  相似文献   

3.
为提高聚乳酸(PLA)/淀粉共混物界面作用和降低成本,引入甲基丙烯酸缩水甘油酯(GMA)接枝聚乳酸和塑化淀粉(TPS),通过挤出和注射成型制备接枝聚乳酸/塑化淀粉共混物(PLA-g-GMA/TPS)。红外光谱分析证实,GMA成功接枝到PLA分子链上。对共混物的力学性能、热机械性能、微观形貌、热性能及亲水性等进行了系统研究,结果表明,选择GMA用量为6%(接枝率为1.51%)和TPS用量为10%时的拉伸强度、断裂伸长率及弹性模量最佳,分别为42.6MPa、8.9%及260MPa。FE-SEM观察结果表明,低含量TPS中颗粒被基体包覆或嵌入,界面平整,界面结合力强。DMA和DSC结果显示,不同质量配比的PLA-g-6%GMA/TPS共混物的Tg、储存模量、结晶度、结晶温度及熔融温度仅在小范围内发生变化。吸水率和接触角结果表明,低含量TPS的共混物吸水率和接触角变化幅度均小于高含量TPS体系。  相似文献   

4.
Poly(lactic acid)-based ternary blends consisting of poly(lactic acid)(PLA),cellulolytic enzyme lignin(CEL),and polyolefine grafting maleic anhydride(PGMA) were prepared by extrusion blending and the mechanical properties and the morphology of the ternary blends were investigated.It was found that the mechanical properties varied with various loading of the components in the blends.Compared to neat PLA,the tensile strength and the Young’s modulus of the ternary blends were decreased,but the elongation at break and the impact strength were effectively improved.Scanning electron microscope observations revealed that the CEL plays a bridging role between PLA and PGMA,enhancing the miscibility between them and resulting in the improvement of ductility and toughness of the ternary blends.Considering the cost and performance,we obtained the optimal blend PLA/CEL/ PGMA(80/20/20,w/w/w),of which the impact strength and the elongation at break were doubled as that of neat PLA,and the tensile strength remained moderate.  相似文献   

5.
Tissue engineering scaffolds should provide a suitable porous structure and proper mechanical strength, which is beneficial for the delivery of growth factor and regulation of cells. In this study, the open‐porous polycaprolactone (PCL)/poly (lactic acid) (PLA) tissue engineering scaffolds with suitable porous scale were fabricated using different ratios of PCL/PLA blends. At the same time, the relationship of foaming process, morphology, and mechanical behavior in the optimized batch microcellular foaming process were studied based on the single‐factor experiment method. The porous structures and mechanical strength of the scaffolds were optimized by adjusting foaming parameters, including the temperature, pressure, and CO2 dissolution time. The results indicated that the foaming parameters influence the cell morphology, further determine the mechanical behavior of PCL/PLA blends. When the PCL content is high, with the increase of temperature and time, the cell diameter and the elastic modulus increased, and the tensile strength and elastic modulus increased with the increase of the average cell size, and decreased as the increase of the cell density. While when the PLA content was high, the cell diameter showed the same trend, and the tensile strength and elastic modulus were higher, and the elongation at break was lower, and tensile strength and elastic modulus decreased with the increase of the average cell size and increased with the increase of cell density. This work successfully fabricated optimized porous PCL/PLA scaffolds with excellent suitable mechanical properties, pore sizes, and high interconnectivity, indicating the effectiveness of modulating the batch foaming process parameters.  相似文献   

6.
Poly(lactic acid) (PLA) and polypropylene (PP) blends of various proportions were prepared by melt-compounding. The miscibility, phase morphology, thermal behavior, and mechanical and rheological properties of the blends were investigated. The blends were immiscible systems with two typical morphologies, spherical droplet and co-continuous, and could be obtained at various compositions. Complex viscosity, storage modulus and loss modulus depend on the PP content. Thermal degradation of all blends led to two weight losses, for PLA and PP. The incorporation of PP improved the thermal stability of the blend. The effect of compatibilizer (ethylene-butyl acrylate-glycidyl methacrylate terpolymer, EBA-GMA) on the morphology and mechanical properties of 70/30 w/w PLA/PP blends was investigated. The tensile strength of these blends reached a maximum for 2.5 wt% EBA-GMA, and impact strength increased with increasing EBA-GMA content, suggesting that EBA-GMA is an effective compatibilizer for PLA/PP blends.  相似文献   

7.
环氧树脂/液晶聚合物体系的形态、力学性能和热稳定性   总被引:29,自引:0,他引:29  
合成了一种端基含有活性基团的热致性液晶聚合物 (LCPU) ,用其改性环氧树脂CYD 12 8 4 ,4′ 二氨基二苯砜 (DDS)固化体系 ,对改性体系的冲击性能、拉伸性能、弯曲性能、弹性模量、断裂伸长率、玻璃化转变温度Tg、热失重温度TG与LCPU含量的关系进行了探讨 ,对不同种类液晶化合物改性CYD 12 8 DDS体系效果进行了比较 ,用扫描电镜 (SEM)研究了材料断面的形态结构 .结果表明 ,LCPU的加入可以使固化物的力学性能和热稳定性提高 ,改性后材料断裂面的形态逐渐呈现韧性断裂特征  相似文献   

8.
Poly(butyl acrylate) was prepared by the free radical polymerization of butyl acrylate as an initiator in the presence of 2,2′-Azoisobu-tyronitrile (AIBN) and the average molecular weight, polydispersity and thermal stability were evaluated. PLA and PBA were melt blended using a Haake Rheometer, and the light transmission, thermal properties, dynamic rheological properties, mechanical properties, phase morphology of blends and toughening mechanism were investigated. Dynamic rheology, SEM and DSC results show that the PLA is partial miscible with PBA. The PBA component improved the crystallization ability of PLA and the crystallinity of PLA increased with content of PBA (<15 wt.%). With the increase of PBA, the tensile strength and modulus of the blend decreased slightly while the elongation at break and toughness were dramatically increased. With the addition of PBA, the failure mode changes from brittle fracture of neat PLA to ductile fracture of the blend. Rheological results revealed the complex viscosity and melt elasticity of the blends decreased with increasing content of PBA and phase segregation occurred at loading above 11 wt.% PBA. UV–vis light transmittance showed that PLA/PBA blends with a high transparency, and the transmittance decreased with the amount of PBA.  相似文献   

9.
边新超  陈学思 《高分子科学》2016,34(9):1070-1078
Poly(ether urethane)s(PEU), including PEUI15 and PEUH15, were prepared through chain-extension reaction of poly(ethylene glycol)(PEG-1500) using diisocyanate as a chain extender, including isophorone diisocyanate(IPDI) and hexamethylene diisocyanate(HDI). These PEUs were used to toughen polylactide(PLA) by physical and reactive blending.Thermal, morphological, mechanical and aging properties of the blends were investigated in detail. These PEUs were partially compatible with PLA. The elongation at break of the reactive blends in the presence of triphenyl phosphate(TPP)for PLA with PEUH15 or PEUI15 was much higher than that of the physical blends. The aging test was carried out at-20 °C for 50 h in order to accelerate the crystallization of PEUs. The PEUs in the PLA/PEU blends produced crystallization and formed new phase separation with PLA, resulting in the declined toughness of blends. Fortunately, under the aging condition,although PEUH15 in blends could also form crystallization, the reactive blend of PLA/PEUH15/TPP(80/20/2) had higher toughness than the other blends. The elongation at break of PLA/PEUH15/TPP(80/20/2) dropped to 287% for the aging blend from 350% for the original blend. The tensile strength and modulus of PLA/PEUH15/TPP blend did not change obviously because of the crystallization of PEUH15.  相似文献   

10.
Dynamic vulcanization of polylactide (PLA) with castor oil (CO) and three different diisocyanates, namely 4,4′-diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI) and isophorone diisocyanate (IPDI), was performed to study the effect of diisocyanate type on the vulcanization process and on the morphology as well as mechanical properties of the PLA/CO-based polyurethane blends. The reactivity of the three diisocyanate followed the order of MDI > HDI > IPDI when reacting with castor oil. Interfacial compatibilization between PLA and the CO-based polyurethane occurred when the less reactive HDI and IPDI was used. Among all the blends, PLA/CO-IPDI showed the finest morphology and the best toughening efficiency. Incorporation of 20 wt% CO-IPDI increased the elongation at break and notched impact strength of PLA by 47.3 and 6.6 times, respectively. Cavitation induced matrix plastic deformation was observed as the toughening mechanism for the PLA blends with CO-based polyurethane. The effect of CO-IPDI content on the morphology and mechanical properties of PLA was studied in detail. The particle size of dispersed CO-IPDI and the elongation at break increased gradually, the tensile strength and Young's modulus decreased gradually, while the impact strength first increased and then decreased with increasing CO-IPDI content from 5 to 30 wt%. The maximum impact strength appeared for the blends with 20 wt% CO-IPDI.  相似文献   

11.
将聚乳酸(PLA)、聚碳酸酯(PPC)及β-羟基丁酸酯与β-羟基戊酸酯共聚物(PHBV)以溶液浇注法制备了各种不同比例的共混膜(60/20/20,40/20/40,40/40/20,20/60/20,20/40/40,20/20/60)。采用示差扫描量热分析(DSC)和热重分析(TG)研究了共混物的热性能,采用万能材料试验机研究了共混物的力学性能,通过土壤悬浊拟环境降解实验和扫描电子显微镜(SEM)研究了共混材料的环境生物降解性能。结果显示,该三元共混体系是部分相容的体系,PLA增加了材料的强度,PPC增加了材料的断裂伸长,PHBV则提高了材料的环境生物降解速率,三者优势互补,是一种有应用前景的生物降解共混体系。  相似文献   

12.
动态固化聚丙烯/环氧树脂共混物的研究   总被引:3,自引:0,他引:3  
将动态硫化技术应用于热塑性树脂 热固性树脂体系 ,制备了动态固化聚丙烯 (PP) 环氧树脂共混物 .研究了动态固化PP 环氧树脂共混物中两组分的相容性、力学性能、热性能和动态力学性能 .实验结果表明 ,马来酸酐接枝的聚丙烯 (PP g MAH)作为PP和环氧树脂体系的增容剂 ,使分散相环氧树脂颗粒变细 ,增加了两组分的界面作用力 ,改善了共混物的力学性能 .与PP相比 ,动态固化PP 环氧树脂共混物具有较高的强度和模量 ,含 5 %环氧树脂的共混物拉伸强度和弯曲模量分别提高了 30 %和 5 0 % ,冲击强度增加了 15 % ,但断裂伸长率却明显降低 .继续增加环氧树脂的含量 ,共混物的拉伸强度和弯曲模量增加缓慢 ,冲击强度无明显变化 ,断裂伸长率进一步降低 .动态力学性能分析 (DMTA)表明动态固化PP 环氧树脂共混物是两相结构 ,具有较高的储能模量 (E′)  相似文献   

13.
In this study, the effects of epoxidized palm oil (EPO) on the mechanical and morphological properties of a blend of two types of biodegradable polymer, poly(lactic acid) (PLA) and polycaprolactone (PCL), were investigated. The solution-casting process, with chloroform as a solvent, was used to prepare samples. Addition of EPO reduced the tensile strength and modulus but increased elongation at break for the PLA–PCL blend. The highest elongation at break was observed for the blend with 10 % (w/w) EPO content. Scanning electron microscopy (SEM) indicated that the fractured surface morphology of the PLA–PCL blend became more stretched and homogeneous in PLA–PCL–EPO. Possible interactions between the PLA–PCL blend and EPO were also characterized by use of Fourier-transform infrared (FTIR) spectroscopy. Thermal stability was studied by differential scanning calorimetry and thermogravimetric analysis. The results from FTIR and SEM revealed that the miscibility of the PLA–PCL blend was improved by addition of EPO.  相似文献   

14.
Melt blending of polylactide (PLA) and a biodegradable poly(ether)urethane (PU) elastomer has been performed in an effort to toughen the polylactide without compromising its biodegradability and biocompatibility. The miscibility, phase morphology, mechanical properties, and toughening mechanism of the blend were investigated. The blend was found by dynamic mechanical analysis to be a partially miscible system with shifted glass transition temperatures. The PU elastomer was dispersed in the PLA matrix with a domain size of sub-micrometer scale. The addition of PU elastomer not only accelerated the crystallization speed, but also decreased the crystallinity of the PLA. With an increase in PU content, the blend shows decreased tensile strength and modulus; however, the elongation at break and the impact strength were significantly increased, indicating the toughening effects of the PU elastomer on the PLA. The brittle fracture of neat PLA was gradually transformed into ductile fracture by the addition of PU elastomer. It was found that the PLA matrix demonstrates large area, plastic deformation (shear yielding) in the blend upon being subjected the tensile and impact tests, which is an important energy-dissipation process and leads to a toughened, biodegradable polymer blend.  相似文献   

15.
Biodegradable poly(butylene succinate-co-lactate) (PBSL)/starch blends that contain various amounts of starch were prepared. In addition, luffa fiber (LF) and kenaf fiber (KF) were incorporated, individually, into PBSL/starch (70/30) blend to achieve biocomposites. The LF and KF were treated with NaOH(aq) prior to their addition to the blend. The Young's modulus and flexural modulus of PBSL increased with the addition of starch and increased further after the formation of the biocomposites. The highest Young's modulus increment, which was found in the KF-added system, was up to a 2.2-fold increase compared with neat PBSL. The tensile/flexural/impact strength of PBSL declined after the formation of the blends. With the further addition of LF/KF, the said properties leveled off. The blends exhibited higher complex viscosity and dynamic storage modulus in the melt state than the neat PBSL, and the values further increased in the biocomposites. The crystallization temperature of PBSL slightly decreased in the blends. By contrast, the biocomposites showed an increment in PBSL crystallization temperature, from 73.0 °C (PBSL) to 75.3 °C (KF-added composite), thereby confirming the surface nucleation effect of LF/KF. The blends showed a higher degree of water absorption than PBSL. The formation of biocomposites led to an even higher degree of water absorption. The current approach of including LF/KF in the PBSL/starch blend to enhance the rigidity and biodegradability was advantageous in expanding the applications of PBSL.  相似文献   

16.
The effect of crystallinity of polylactide (PLA) on the structure and properties of tough PLA blends with PEG-b-PPG-b-PEG block copolymers was studied. PLA was melt blended with a set of the copolymers with varying ratio of the hydrophilic (PEG) and hydrophobic (PPG) blocks. Although the blend phase structure depended on the copolymer molar mass and PEG content, as well as on the copolymer concentration in the blend, crystallinity also played an important role, increasing the copolymer content in the amorphous phase and enhancing phase separation. The influence of crystallinity on the thermal and mechanical properties of the blends depended on the copolymer used and its content. The blends, with PLA crystallinity of 25 ÷ 34 wt%, exhibited relatively high glass transition temperature ranging from 45 to 52 °C, and melting beginning above 120 °C. Although with a few exceptions crystallinity worsened the drawability and toughness, these properties were improved with respect to neat crystalline PLA in the case of partially miscible blends, in which fine liquid inclusions of the modifier were dispersed in PLA rich matrix. About 20-fold increase of the elongation at break and about 4-fold increase of the tensile impact strength were reached at a small content (10 wt%) of the modifier. Moreover, crystallinity decreased oxygen and water vapor transmission rates through neat PLA and the blend, and the barrier property for oxygen of the latter was better than that of neat polymer.  相似文献   

17.
In this study, a highly toughened PLA was prepared through physical melt-blending with EVA at the presence of hydrophilic nanosilica and SEBS-g-MA block copolymer compatibilizer. The effect of nanosilica and compatibilizer on the morphology, mechanical properties, and linear rheology of the PLA/EVA blends was also investigated. According to TEM images, nanosilica was selectively located in the PLA matrix while some were placed on the interface between the two polymers as was also predicted by thermodynamic and kinetic analysis. Upon the addition of nanoparticles, the interfacial adhesion between the phases was enhanced and the average droplet size decreased. Interestingly, incorporation of SEBS-g-MA induced morphological changes as the spherical EVA droplets turned into a cylindrical shape. DSC results indicated that blending with EVA copolymer resulted in the reduction of crystallization of PLA matrix; however, the crystallinity increased at the presence of nanoparticles up to 5 wt%. The addition of compatibilizer considerably hindered the crystallization of the PLA phase. PLA/EVA blend containing optimum levels of nanosilica exhibited considerably enhanced tensile toughness, elongation at break, and impact strength. On the other hand, the simultaneous addition of nanoparticles and SEBS-g-MA led to synergistic toughening effects and the compatibilized blend containing nanosilica exhibited excellent impact toughness. For instance, the elongation at break of the compatibilized PLA/EVA blend containing the optimal content of nanosilica was increased from 7% to 121% (compared to neat sample). The notched Izod impact strength was also increased from 5.1 to 65 kJ/m2. Finally, the microstructure of the blends was assessed by rheological measurements.  相似文献   

18.
The effects of the compatibilizer polyethylene grafted with glycidyl methacrylate (PE‐g‐GMA) on the properties of low‐density polyethylene (LDPE) (virgin and reprocessed)/corn starch blends were studied. LDPE (virgin and reprocessed)/corn starch blends containing 30, 40 and 50 wt% starch, with or without compatibilizer, were prepared by extrusion and characterized by the melt flow index (MFI), tensile test, dynamic mechanical analysis (DMTA) and light microscopy. The addition of starch to LDPE reduced the MFI values, the tensile strength and the elongation at break, whereas the modulus increased. The decreases in the MFI and tensile properties were most evident when 40 and 50 wt% starch were added. Blends containing 3 wt% PE‐g‐GMA had higher tensile strength values and lower MFI values than blends without compatibilizer. Light microscopy showed that increasing the starch content resulted in a continuous phase of starch. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
《先进技术聚合物》2018,29(7):2121-2133
Polylactide (PLA)/poly(butylene succinate) (PBS) blend films modified with a compatibilizer and a plasticizer were hot‐melted through a twin screw extruder and prepared by hydraulic press. Toluene diisocyanate (TDI) and polylactide‐grafted‐maleic anhydride (PLA‐g‐MA) were used as compatibilizers, while triethyl citrate and tricresyl phosphate acted as plasticizers. The effects of the type and content of compatibilizer and plasticizer on the mechanical characteristics, thermal properties, crystallization behavior, and phase morphology of the PLA/PBS blend films were investigated. Reactive compatibilization at increasing levels of TDI improved the compatibility of the PLA and PBS, affecting the toughness of the films. As evidenced by scanning electron microscope, the addition of TDI enhanced the interfacial adhesion of the blends, leading to the appearance of many elongated fibrils at the fracture surface. Furthermore, PLA/PBS blending with both TDI and PLA‐g‐MA led to an acceleration of the cold crystallization rate and an increment of the degree of crystallinity ( ). Toluene diisocyanate could be a more effective compatibilizer than PLA‐g‐MA for PLA/PBS blend films. The synergistic combination of compatibilizer and plasticizer brought a significant improvement in elongation at break and tensile‐impact toughness of the PLA/PBS blends, compared with neat PLA. Their failure mode changed from brittle to ductile due to the improved compatibility and molecular segment mobility of the PLA and PBS phases. Differential scanning calorimeter results revealed that the plasticizers triethyl citrate and tricresyl phosphate changed the thermal behavior of Tcc and Tm, affecting α′ and α crystal formations. However, these plasticizers only slightly improved the thermal stability of the films.  相似文献   

20.
Summary: In this study, blends of poly(lactic acid) (PLA) with poly(butylene adipate-co-terephthalate) (PBAT) were studied for their mechanical and thermal properties as a function of the PBAT content. Tensile testing, impact testing, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMTA) and scanning electron microscopy (SEM) were used to characterize the blends. It was observed that PLA/PBAT blends maintained quite high modulus and tensile strength compared to pure PLA. Small amounts of PBAT improved the elongation at break and the impact resistance showing a debonding effect typical of rubber toughened systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号