首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption of poly(ethylene oxide) (PEO) on synthetic anisotropic clay particles (Laponite) has been investigated as a function of the molecular weight. Contrast variation small-angle neutron scattering (SANS) measurements were used to characterize the distribution and adsorbed amount of polymer on the particles. These experiments show not only that polymer is present on the face of the clay particle but that it also extends or "wraps" over the edges. The edge layer was thicker than the face layer for all the molecular weights studied. The polymer layers are unusually thin, with a thickness and adsorbed amount that show little variation with molecular weight.  相似文献   

2.
Charging behavior and colloidal stability of amidine latex particles are studied in the presence of poly(sodium styrene sulfonate) (PSS) and KCl. Detailed measurements of electrophoretic mobility, adsorbed layer thickness, and aggregation (or coagulation) rate constant on varying the polymer dose, molecular mass of the polymer, and ionic strength are reported. Polyelectrolyte adsorption leads to the characteristic charge reversal (or overcharging) of the colloidal particles at the isoelectric point (IEP). In accordance with classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, uncharged particles tend to aggregate because of van der Waals attraction, whereas charged particles are stabilized by electrical double layer repulsion. Attractive patch-charge interactions originating from the laterally inhomogeneous structure of the adsorbed polymer substantially decrease the suspension stability or even accelerate the aggregation rate beyond diffusion control. These electrostatic non-DLVO forces become progressively important with increasing molecular mass of the polymer and the ionic strength of the solution. At higher polymer dose of typically 10 times the IEP, one observes the formation of a saturated layer of the adsorbed polymer with a thickness of several nanometers. Its thickness increases with increasing molecular mass, whereby the layer becomes increasingly porous. This layer does not seem to be involved in the suspension stabilization, since at such high polymer doses the double layer repulsion has attained sufficient strength to stabilize the suspension.  相似文献   

3.
The salt-induced aggregation of polystyrene particles in dilute aqueous solutions has been studied by means of dynamic light scattering measurements and the hydrodynamic radius of the resulting aggregates has been evaluated during the time evolution of the whole process. Poly(ethylene oxide) (PEO) polymer adsorbed on the particle surface at different amounts has been used to modify the inter-particle interactions resulting in the formation of clusters of increasing size or in the stabilization of the suspension, depending on the polymer molecular weight. The aggregation regime, i.e. a diffusion limited cluster aggregation (DLCA) occurring in the polymer-free latex suspension, is partially modified according to the polymer percentage adsorbed on the particle surface. At high polymer content, the polystyrene latex undergoes a complete steric stabilization. The deviation from a DLCA regime has been observed for different polymer contents and for polymers of different molecular weights, from 1.5 to 2000 kD. The alterations of the aggregation rates, induced by the polymer interactions, are presented and briefly discussed.  相似文献   

4.
The adsorption isotherms for certain polymer and surfactant molecules (and in some cases their mixtures) on stainless steel beads from isooctane have been obtained, together with corresponding adsorbed layer thicknesses, using an atomic force microscope. The polymer is a terminally functionalised (ethylene diamine), low molecular weight polyisobutylene (PIB) derivative and the surfactants are basically alkyl or alkyl phenol alkoxylate molecules, which in one case has been derivatised with an amino functionality. The results indicate the presence of multilayers at the stainless steel-isooctane interface. Theoretical analysis of the surfactant adsorption isotherms suggests molecular aggregation at the interface with an aggregation number between 2 and 6, at the highest coverages. The adsorption of the polymer is reduced in the presence of the surfactant molecules. The polymer leaches metal ions from the steel surface at higher concentrations.  相似文献   

5.
In this study a systematic investigation on the adsorption of polyethylene oxide (PEO) onto the surface of silica particles and the viscosity behavior of concentrated dispersions of silica particles with adsorbed PEO has been performed. The variation of shear viscosity with the adsorbed layer density, concentration of free polymer in the solution (depletion forces), polymer molecular weight, and adsorbed layer thickness at different salt concentrations (range of the electrostatic repulsion between particles) is presented and discussed. Adsorption and rheological studies were performed on suspensions of silica particles dispersed in solutions of 10−2 M and 10−4 M NaNO3 containing PEO of molecular weights 7,500 and 18,500 of different concentrations. Adsorption measurements gave evidence of a primary plateau in the adsorption density of 7,500 MW PEO at an electrolyte concentration of 10−2 M NaNO3. Results indicate that the range of the electrostatic repulsion between the suspended particles affects both adsorption density of the polymer onto the surface of the particles and the viscosity behavior of the system. The adsorbed layer thickness was estimated from the values of zeta potential in the presence and absence of the polymer and was found to decrease with decreasing the range of the electrostatic repulsive forces between the particles. Experimental results show that even though there is a direct relation between the viscosity of the suspension and the adsorption density of the polymer onto the surface of the particles, variation of viscosity with adsorption density, equilibrium concentration of the polymer, and range of the electrostatic repulsion cannot be explained just in term of the effective volume fraction of the particles and needs to be further investigated. Received: 15 February 2000/Accepted: 26 June 2000  相似文献   

6.
The adsorption of selected poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) tri-block copolymers on synthetic clay particles (laponite) has been investigated. The adsorbed amount and distribution of polymer was determined as a function of relative block composition and size, using the technique of contrast variation small-angle neutron scattering. The pluronic molecules appear to adsorb via a preferential segregation of hydrophobic PPO segments at the surface, with hydrophilic PEO segments dangling into solution. The effect of the PPO segments is substantial with large increases in adsorbed amount and layer thickness as the anchor fraction decreases/PEO chain length increases. This is in direct contrast to the behavior observed for PEO homopolymer adsorption (of much higher molecular weights) where the adsorbed amount and layer thickness are smaller and change little with molecular weight.  相似文献   

7.
It has been shown that the coagulation values of counterions for SiC and TiC suspensions with particle radius from 0.5 to 5 microm obey a z(2.5-3.5) law and there is an insufficient change in the critical concentration of 1-1 electrolytes (CCE) when the surface potential of particles increases more than two times. Also, the CCE values hardly depend on the position of counterions in the lyotropic sequence. This is explained by aggregation of SiC and TiC particles at a secondary minimum, which is proved by calculations of the potential curves of interparticle interactions using the DLVO theory. The adsorption of poly(ethylene oxide) on the surfaces studied does not cause--in contradiction to dispersions with smaller particles--an unlimited growth in the stability of suspensions. This is due to the aggregation of large particles with adsorbed PEO, as in polymer-free dispersions, under barrierless conditions in which the coordinates of the secondary minimum are determined by superposition of molecular attractive forces and steric repulsive forces of adsorbed polymeric chains, without a contribution from the electric repulsion term. PEO-anionic surfactant complexes possess higher stabilizing capacity compared to the individual components of the mixture. Our results show that the adsorbed polymer layers may hinder the aggregation both in the primary and in the secondary minimum for not very large particles only, the critical size of which depends on the dispersed phase nature and the molecular mass of the polymer.  相似文献   

8.
Stable graphene suspensions were prepared through ultrasonic exfoliation followed by surface modification with the cationic polyelectrolyte poly(ethyleneimine) (PEI). The stability of the suspensions was found to be dependent upon the pH of the solution and the molecular weight of the PEI adsorbed. For the graphene sheets with adsorbed PEI with a molecular weigh of 600 Da, the particles were stabilised through an increased electrostatic repulsion at low pH inferred from in an increase in the measured zeta potential of the particles. However, the graphene with higher molecular weight PEI (70 kDa) was stable over a comparatively larger pH range through a combination of electrostatic repulsion at low pH and steric repulsion at elevated pH. Thus, solution conditions allowing the control of the colloidal sized graphene particles can be easily tuned through judicious management of solution conditions as well as polymer layer properties.  相似文献   

9.
Studies of the adsorption of high molecular weight polymers on colloidal latex and silica particles and their subsequent flocculation were carried out. Neutral polyethylene oxide samples with both a narrow and a broad molecular weight distribution were used together with low charged cationic copolymers. The influence of the particle concentration and polymer dose on the flocculation were systematically investigated under quiescent conditions.Equilibrium bridging only occurred with polyelectrolyte, even in very dilute suspensions, at high particle coverage. In contrast to this, non-equilibrium bridging occurred with both neutral polymer and polyelectrolytes but only for more concentrated suspensions and small amounts of adsorbed polymer. Polymer adsorption in dilute suspensions, which did not show particle aggregation was measured an electrophoretic technique. In more concentrated suspensions, where flocculation takes place, we found that aggregation prevents further polymer adsorption and induces both an excluded volume and a surface effect. The consequences on the shape of the isotherms differ according to the aggregation mechanism.A significant decrease of the amount, , of adsorbed polymer is observed with non-equilibrium bridging. When both mechanisms simultaneously contribute to the aggregation, the value of depends on their relative importance. In the intermediate range of copolymer dose their respective contributions are critically sensitive to the details of the mixing step and stirring, leading to non reproducible experimental results.  相似文献   

10.
The role of surfactant type in the aggregation and gelation of strawberry-like particles induced by intense shear without any electrolyte addition is investigated. The particles are composed of a rubbery core, partially covered by a plastic shell, and well stabilized by fixed (sulfate) charges in the end group of the polymer chains originating from the initiator. In the absence of any surfactant, after the system passes through a microchannel at a Peclet number equal to 220 and a particle volume fraction equal to 0.15, not only shear-induced gelation but also partial coalescence among the particles occurs. The same shear-induced aggregation/gelation process has been carried out in the presence of an ionic (sulfonate) surfactant or a nonionic (Tween 20) steric surfactant. It is found that for both surfactants shear-induced gelation does occur at low surfactant surface density but the conversion of the primary particles to the clusters constituting the gel decreases as the surfactant surface density increases. When the surfactant surface density increases above certain critical values, shear-induced gelation and eventually even aggregation do not occur any longer. For the sulfonate surfactant, this was explained in the literature by the non-DLVO, short-range repulsive hydration forces generated by the adsorbed surfactant layer. In this work, it is shown that the steric repulsion generated by the adsorbed Tween 20 layer can also protect particles from aggregation under intense shear. Moreover, the nonionic steric surfactant can also protect the strawberry-like particles from coalescence. This implies a decrease in the fractal dimension of the clusters constituting the gel from 2.76 to 2.45, which cannot be achieved using the ionic sulfonate surfactant.  相似文献   

11.
The temperature stability of aqueous dispersions of hydrophobic monodisperse silica particles stabilized with nonionic surfactants has been investigated. Adsorption isotherms in conjunction with surface tension measurements showed that the surfactant formed a monolayer on the surface of the particles, where the adsorbed amount depended on the molecular weight of the ethylene oxide headgroup. The temperature stability of these dispersions has been measured by a standard turbidimetric technique and visual observations in terms of their critical flocculation temperature (CFT). Parameters controlling the CFT of the individual dispersions stabilized with a monolayer of surfactant include the thickness of the steric layer, the particle size, and the volume fraction of the particles. Calculations show that the van der Waals attraction between the particles with adsorbed polymer layers increases as the temperature of the dispersion increases, and this largely accounts for the observed CFT behavior.  相似文献   

12.
We study the effects of increasing the concentration of a low molecular weight polyethylene glycol on the stability of 44 nm diameter silica nanoparticles suspended in ethanol. Polymer concentration, c(p), is increased from zero to that characterizing the polymer melt. Particle stability is accessed through measurement of the particle second-virial coefficient, B(2), performed by light scattering and ultrasmall angle X-ray scattering (USAXS). The results show that at low polymer concentration, c(p) < 3 wt %, B(2) values are positive, indicating repulsive interactions between particles. B(2) decreases at intermediate concentrations (3 wt % < c(p) < 50 wt %), and particles aggregates are formed. At high concentrations (50 wt % < c(p)) B(2) increases and stabilizes at a value expected for hard spheres with a diameter near 44 nm, indicating the particles are thermodynamically stable. At intermediate polymer concentrations, rates of aggregation are determined by measuring time-dependent changes in the suspension turbidity, revealing that aggregation is slowed by the necessity of the particles diffusing over a repulsive barrier in the pair potential. The magnitude of the barrier passes through a minimum at c(p) ≈ 12 wt % where it has a value of ~12 kT. These results are understood in terms of a reduction of electrostatic repulsion and van der Waals attractions with increasing c(p). Depletion attractions are found to play a minor role in particle stability. A model is presented suggesting displacement of weakly adsorbed polymer leads to slow aggregation at intermediate concentration, and we conclude that a general model of depletion restabilization may involve increased strength of polymer adsorption with increasing polymer concentration.  相似文献   

13.
The effect of amount of monomer on radiation-induced polymerization of styrene adsorbed on silica gel was investigated with the monomer amounting from less than monolayer adsorption to more than the equilibrium adsorption. The rate of graft polymerization and the molecular weight of the polymer changed with the amount of monomer adsorbed on silica gel. Maximum grafting efficiency was obtained at monolayer adsorption. The molecular weight of graft polymer was higher than that of homopolymer in both radical and cationic polymerizations, and the ratio in molecular weight of graft polymer to that of homopolymer tends to be unity with increasing amount of adsorbed monomer. These results can mainly be explained in terms of the number of initiating species (radical and cation) that change in relation to the amount of adsorbed monomer. Propagation and termination change with amount of adsorbed monomer in relation to the molecular mobility of adsorbed monomer. A very high-molecular-weight graft polymer is formed only with a small amount of adsorbed monomer in the initial stage. The grafting percent with a large amount of adsorbed monomer increased after most of the monomer has been polymerized. Secondary effect of radiation on the graft and homopolymers due to energy transfer from silica gel is suggested from the complicated phenomena in the later stage of the reaction.  相似文献   

14.
 Experimental results on the role of adsorbed polymers on the particle adhesion are presented. Both Brownian (silica particles) and non-Brownian (glass beads) particles were used. The particles were deposited onto the internal surface of a glass parallelepiped cell, and then submitted to increasing laminar flow rates. The pH and the ionic strength of the electrolytes were fixed. The adhesive force was related to the hydrodynamic force required to dislodge 50% of the initially attached beads. We found that high molecular weight PEO had little effect on the adhesion of small silica beads due to the low affinity of the polymer for silica or glass surfaces. On the contrary, PEO greatly enhanced the adhesion of bigger glass beads forced to deposit on the capillary surface because of gravity. The increase was all the more pronounced as the molecular weight of the polymer was high. The effect of high molecular weight cationic copolymers on the adhesion of silica particles was drastic. The maximal force (1500 pN) applied by the device could not enable any particle detachment even using polymers of low cationicity rate (5%), showing the efficiency of electrostatic attractions. When copolymers were adsorbed on both surfaces (particles and plane), the adhesive force exhibited a maximum at intermediate coverage of particles. This optimum was related to the optimum flocculation concentration classically observed in flocculation of suspensions by polymers. Received: 16 February 1996 Accepted: 10 September 1996  相似文献   

15.
The thickness of films of poly(methyl methacrylate) (PMMA), poly(vinyl acetate) (PVAc), and polystyrene (PS) adsorbed on Pyrex glass was studied by measuring the flow rates of polymer solutions and the corresponding pure solvents through sintered filter disks. Adsorption isotherms were in agreement with those reported by other workers and showed saturation adsorption equivalent to 2–8 condensed monolayers of monomer units. Film thicknesses were of the order of magnitude of the free coil diameters in solution and were directly proportional to the intrinsic viscosity of the polymer, except for PS in benzene where the thicknesses leveled off as molecular weight increased. It was concluded that polymers adsorb from solution in monolayers of compressed or interpenetrating coils; that below some critical molecular weight which varies with polymer and solvent, a much larger fraction of the segments lies directly in the interface; that adsorbed films may consist of a dense layer immediately adjacent to the surface and a deep layer of loops extending into the solvent; and that it is the segment—solvent interaction rather than the segment—surface interaction which dominates the conformation of the adsorbed chain.  相似文献   

16.
The effect of polyethylene oxide (PEO) or polypropylene oxide (PPO) oligomers of various molecular weight (Mw) as well as of triblock copolymers, based on PEO and PPO blocks, on aqueous laponite RD suspensions was studied with small-angle neutron scattering (SANS). The radius of gyration (RG) increases for low M w whereas the opposite occurs for larger Mw. This behavior is explained on the basis that an effective R G is given by two contributions: (1) the size of the particles coated with the polymer and (2) the interactions between the laponite RD particles which are attractive for small and repulsive for large polymers. The SANS curves in the whole Q-range are well described by a model of noninteracting polydisperse core+shell disks, where the thickness of the polymer layer increases with the Mw. The adsorbed polymer is in a more compact conformation compared to a random coil distribution while the fraction of the polymer in the shell formed around the laponite RD particles is nearly independent of Mw. For increasing laponite RD amounts, at a given polymer composition, the thickness of the polymer slightly changes. In some cases, where also gelation is sped up, a structure factor with attractive interaction was employed which allowed to evaluate the attractive forces between the laponite RD particles. The gelation time was determined for mixtures at fixed copolymer and laponite RD concentrations. Surprisingly, it is observed that gels are formed despite the fact that the binding sites of the laponite RD particles are almost covered but the polymer size is too small to prevent aggregation. The gelation rate is correlated to structure and thermodynamics of these systems. Namely, when the balance between the steric forces and the depletion attractive forces undergoes an abrupt change the gelation time also undergoes a sharp variation. For lower and comparable Mw, PPO speeds up the gelation more efficiently than PEO while for higher Mw the gelation kinetics is slowed down again. Interestingly, copolymers of PEO and PPO blocks do not induce gelation in the time-window where the homopolymers do.  相似文献   

17.
A thermodynamic analysis of the interaction between fourteen different molar mass poly(ethylene oxide)s (PEO) and sodium dodecyl sulfate (SDS) based on the measured surfactant-binding isotherms is given. The surfactant-binding isotherms were determined by the potentiometric method in the presence of 0.1 M inert electrolyte (NaBr). It was found that there is no PEO/SDS complex formation if M(PEO) < 1000. In the molecular weight range 1000 < M(PEO) < 8000, the critical aggregation concentration (cac) and the surfactant aggregation number are decreasing as the polymer molecular weight increases. The saturated bound surfactant amount is proportional to the number concentration of the polymer in this molecular weight range. If M(PEO) exceeds approximately 8000, the cac does not depend on the polymer molar mass, and the saturated bound amount of the surfactant becomes proportional to the mass concentration of the polymer. It was also observed that independently of the polymer molecular weight the surfactant aggregation number increases as the equilibrium surfactant monomer concentration increases from the cac to the critical micellar concentration (cmc). Finally, it was demonstrated that only one polymer molecule is involved in the complex formation independently of the polymer molecular weight.  相似文献   

18.
The adsorption of three modified dextrins on the basal plane of talc has been studied using in situ tapping mode atomic force microscopy (TMAFM). The images have been used to determine the layer thickness and coverage of the adsorbed polymers. Adsorption isotherms of the polymers on talc particles were also determined using the depletion technique. Values of the adsorbed amount at equilibrium were compared with the volume of adsorbed material as determined using in situ TMAFM, revealing the presence of significant amounts of hydration water in the adsorbed layer structure. This deduction was confirmed by comparing in and ex situ TMAFM images of the adsorbed dextrins. The effect of layer thickness, coverage, and hydration water content on the contact angle of talc particles treated with polymer was investigated using the Washburn method and the equilibrium capillary pressure (ECP) method. Distinct correlations were observed between adsorbed layer properties and the measured contact angles, with the ECP measurements especially highlighting the effect of the adsorbed polymer layer hydration water. The implications for the performance of the modified dextrins in flotation are discussed.  相似文献   

19.
Charging properties and colloidal stability of negatively charged polystyrene latex particles were investigated in the presence of linear poly(ethylene imine) (LPEI) of different molecular masses by electrophoresis and dynamic light scattering (DLS). Electrophoretic mobility measurements illustrate that LPEI strongly adsorbs on these particles leading to charge neutralization at isoelectric point (IEP) and charge reversal. Time-resolved DLS experiments indicate that the aggregation of the latex particles is rapid near the IEP and slows down away from this point. Surprisingly, the colloidal stability does not depend on the molecular mass, which indicates that the adsorbed LPEI layer is rather homogeneous.  相似文献   

20.
This work is devoted to the synthesis and stabilization of magnetorheological suspensions constituted by monodisperse micrometer-sized magnetite spheres in aqueous media. The electrical double-layer characteristics of the solid/liquid interface were studied in the absence and presence of adsorbed layers of high molecular weight polyacrylic acids (PAA; Carbopol). Since the Carbopol-covered particles can be thought of as "soft" colloids, Ohshima's theory was used to gain information of the surface potential and the charge density of the polymer layer. The effect of the pH of the solution on the double-layer characteristics is related to the different conformations of the adsorbed molecules provoked by the dissociation of the acrylic groups present in polymer molecules. The stability of the suspensions was experimentally studied for different pH and polymer concentrations, and in the absence or presence of a weak magnetic field applied. The stability of the suspensions was explained using the classical DLVO theory of colloidal stability extended to account for hydration, steric, and magnetic interactions between particles. Diagrams of potential energy vs interparticle distance show the predominant effect of steric, hydrophilic/hydrophobic, and magnetic interactions on the whole stability of the system. The best conditions to obtain stable suspensions were found when strong steric and hydrophilic repulsions hinder the coagulation between polymer-covered particles, simultaneously avoiding sedimentation by the thickening effect of the polymer solution. When a not too high molecular weight PAA was employed in a low concentration, the task of a long-time antisettling effect compatible with the desired magnetic response of the fluid was achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号