首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study deals with the utilization of chicken feather waste as a substrate for anaerobic digestion and improving biogas production by degradation of the compact structure of the feather keratin. In order to increase the digestibility of the feather, different pretreatments were investigated, including thermal pretreatment at 120 °C for 10 min, enzymatic hydrolysis with an alkaline endopeptidase [0.53–2.66 mL/g volatile solids (VS) feathers] for 0, 2, or 24 h at 55 °C, as well as a combination of these pretreatments. The effects of the treatments were then evaluated by anaerobic batch digestion assays at 55 °C. The enzymatic pretreatment increased the methane yield to 0.40 Nm3/kg VSadded, which is 122 % improvement compared to the yield of the untreated feathers. The other treatment conditions were less effective, increasing the methane yield by 11–50 %. The long-term effects of anaerobic digestion of feathers were examined by co-digestion of the feather with organic fraction of municipal solid waste performed with and without the addition of enzyme. When enzyme was added together with the feed, CH4 yield of 0.485 Nm3/kg VS?1 d?1 was achieved together with a stable reactor performance, while in the control reactor, a decrease in methane production, together with accumulation of undegraded feather, was observed.  相似文献   

2.
Chicken feathers are available in large quantities around the world causing environmental challenges. The feathers are composed of keratin that is a recalcitrant protein and is hard to degrade. In this work, chicken feathers were aerobically pretreated for 2–8 days at total solid concentrations of 5, 10, and 20 % by Bacillus sp. C4, a bacterium that produces both α- and β-keratinases. Then, the liquid fraction (feather hydrolysate) as well as the total broth (liquid and solid fraction of pretreated feathers) was used as substrates for biogas production using anaerobic sludge or bacteria granules as inoculum. The biological pretreatment of feather waste was productive; about 75 % of feather was converted to soluble crude protein after 8 days of degradation at initial feather concentration of 5 %. Bacteria granules performed better during anaerobic digestion of untreated feathers, resulting in approximately two times more methane yield (i.e., 199 mlCH4/gVS compared to 105 mlCH4/gVS when sludge was used). Pretreatment improved methane yield by 292 and 105 % when sludge and granules were used on the hydrolysate. Bacteria granules worked effectively on the total broth, yielded 445 mlCH4/gVS methane, which is 124 % more than that obtained with the same type of inoculum from untreated feather.  相似文献   

3.
Propionate degradation is crucial for maintaining the efficiency and stability of an anaerobic reactor. However, there was little information about the effects of ecological factor on propionate-oxidizing bacteria (POB). In current research, quantitative real-time fluorescence polymerase chain reaction (QPCR) of some identified POB and methanogens with a decrease in temperature in an upflow anaerobic sludge bed (UASB) reactor containing propionate as sole carbon source was investigated. The results showed that there were at least four identified POB, including Pelotomaculum schinkii, Pelotomaculum propionicum, Syntrophobacter fumaroxidans, and Syntrophobacter sulfatireducens, observed in this UASB reactor. Among them, P. schinkii was dominated during the whole operational period. Its quantity was 1.2?×?104 16S rRNA gene copies per nanogram of DNA at 35 °C. A decrease in temperature from 35 to 30 °C led to P. schinkii to be increased by 1.8 times and then it was gradually reduced with a decrease in temperature from 30 to 25, 20, and 18 °C stepwise. A decrease in temperature from 35 to 20 °C did not make the amount of methanogens markedly changed, but hydrogenotrophic methanogens (Methanospirillum) and acetotrophic methanogens (Methanosaeta) at 18 °C were increased by an order of magnitude and 1.0 time, respectively, compared with other experimental conditions.  相似文献   

4.
Biosurfactants are of considerable interest due to their biodegradability, low degree of toxicity, and diverse applications. However, the high production costs involved in the acquisition of biosurfactants underscore the need for optimization of the production process to enable viable application on an industrial scale. The aims of the present study were to select a species of Candida that produces a biosurfactant with the greatest emulsifying potential and to investigate the influence of components of the production medium and cultivation conditions. Candida utilis achieved the lowest surface tension (35.53 mN/m), best emulsification index (73 %), and highest yield (12.52 g/l) in a medium containing waste canola frying oil as the carbon source and ammonium nitrate as the nitrogen source. The best combination of medium components and cultivation conditions was 6 % (w/v) glucose, 6 % (w/v) waste canola frying oil, 0.2 % (w/v) ammonium nitrate, 0.3 % (w/v) yeast extract, 150 rpm, 1 % inoculum (w/v), and 88 h of fermentation. The greatest biosurfactant production and the lowest surface tension were achieved in the first 24 h of production, and the maximum biomass production was recorded at 72 h. The biosurfactant produced from C. utilis under the conditions investigated in the present study has a potential to be a bioemulsifier for application in the food industry.  相似文献   

5.
Microalgae farming has been identified as the most eco-sustainable solution for producing biodiesel. However, the operation of full-scale plants is still limited by costs and the utilization of industrial and/or domestic wastes can significantly improve economic profits. Several waste effluents are valuable sources of nutrients for the cultivation of microalgae. Ethanol production from sugarcane, for instance, generates significant amounts of organically rich effluent, the vinasse. After anaerobic digestion treatment, nutrient remaining in such an effluent can be used to grow microalgae. This research aimed to testing the potential of the anaerobic treated vinasse as an alternative source of nutrients for culturing microalgae with the goal of supplying the biodiesel industrial chain with algal biomass and oil. The anaerobic process treating vinasse reached a steady state at about 17 batch cycles of 24 h producing about 0.116 m3CH4 kgCODvinasse ?1. The highest productivity of Chlorella vulgaris biomass (70 mg l?1 day?1) was observed when using medium prepared with the anaerobic digester effluent. Lipid productivity varied from 0.5 to 17 mg l?1 day?1. Thus, the results show that it is possible to integrate the culturing of microalgae with the sugarcane industry by means of anaerobic digestion of the vinasse. There is also the advantageous possibility of using by-products of the anaerobic digestion such as methane and CO2 for sustaining the system with energy and carbon source, respectively.  相似文献   

6.
The kinetics of hydrolysis of fluvoxamine maleate (FLV) has been investigated over the pH range 1.0–12.0 at 40, 60 and 80 °C. FLV degradation follows pseudo-first-order kinetics which is consistent with the kinetics of drugs that are not readily dissolved in aqueous medium. The hydrolytic degradation rate constant (kobs) range from 0.92 (pH 6.0) to 13.8 × 10−4 min−1 (pH 1.0). The kobs represents the sum of six different degradation rate constants; the kH has been found to be higher than kOH. The FLV exhibits a typical rate- pH profile with a flat bottom over the pH range 3.0–6.0 which indicates its maximum stability at pH 6.0. Ten FLV degradants have been predicted by Zeneth software and among them four degradation products (D1, D2, D3 and D4) have been identified in degraded samples. The in-silico pharmacokinetics and toxicity of degradation products have been determined using Swiss ADME and admetSAR software. The toxicity profile reveals that D2 is both AMES toxic and carcinogenic while the rest of the products are non-AMES toxic and non-carcinogenic. All of the degradation products are high in causing fish toxicity thus their presence in pharmaceutical waste is alarming for environmental safety.  相似文献   

7.
Several batch experiments were conducted on the anaerobic co-digestion of dairy cow manure (DCM) with three harvest residues (HR) (soybean straw, sunflower stalks, and corn stover). The influence of thermal pretreatment of HR on biogas production was investigated, where the HR were thermally pretreated at two different temperatures: T = 121 °C and T = 175 °C, during t = 30 and t = 90 min, respectively. All anaerobic co-digestion batch experiments were performed simultaneously under thermophilic regime, at T = 55 °C. Biogas and methane yields were significantly improved in experiments performed with corn stover thermally pretreated at 175 °C for 30 min (491.37 cm3/g VS and 306.96 cm3/g VS, respectively), if compared to experiments performed with untreated corn stover. The highest VS and COD removal rates were also observed in the same group of experiments and were 34.5 and 50.1%, respectively. The highest biogas and methane yields with soybean straw (418.93 cm3/g VS and 261.44 cm3/g VS, respectively) were obtained when soybean straw pretreated at 121 °C during 90 min. The highest biogas and methane yields with sunflower stalk (393.28 cm3/g VS and 245.02 cm3/g VS, respectively) were obtained when sunflower stalk was pretreated at 121 °C during 90 min.  相似文献   

8.
The gamma degradation of toxic non-oxidizing biocide dodecyl dimethyl benzyl ammonium chloride (DDBAC) was investigated. The degradation of DDBAC achieved 70–100% depending on the initial concentration and the absorbed dose, but only 10–33% dissolved organic carbon was removed. The presence of NO3 ?, HCO3 ?, 2-propanol and tert-butanol inhibited the degradation of DDBAC. The DDBAC degradation rate constant ratios of ·OH, ·H and e aq ? was calculated as 7.4:1.4:1. The acute toxicity of 10 mg L?1 DDBAC was removed by 60% at absorbed doses of 0.5–3.0 kGy. The results showed that gamma irradiation was effective to remove DDBAC and its toxicity.  相似文献   

9.
Grafted copolymer of Plantago psyllium mucilage and acrylonitrile (Psy–g–PAN) has been synthesized in the presence of nitrogen using a ceric ion–nitric acid redox system. The solid removal efficiency of this copolymer was tested with tannery effluent. The suitable pH, optimum dose of polymer and contact time for the maximum removal of suspended (SS) and dissolved solids (TDS) are reported. The optimum dose was found to be 1.2 mg l?1. The suitable pH values, at which a maximum SS removal of about 89% and TDS removal of about 27% occurred, were found to be 7.0 and 9.2 for SS and TDS, respectively. The optimum treatment duration was 3 h. The analysis of X-ray diffraction patterns of Psy–g–PAN and solid waste from effluent before and after treatment suggests the interaction of the solid waste with the Psy–g–PAN copolymer.  相似文献   

10.
Potato starch processing waste is causing serious environmental problems. This study aimed to convert potato starch processing waste into single-cell protein as high-quality feed using a two-step fermentation process. The mutant strain Aspergillus niger H3 was selected after UV irradiation and ethyl methyl sulfone mutagenesis for more cellulase production. The activities of sodium carboxymethyl cellulase and filter paperase of strain H3 were 8.86 and 4.79 U, respectively, which were much higher than the parent strain (1.18 and 0.62 U). After treatment with strain H3, the cellulose degradation rate of potato residue was 80.54 %. A liquid fermentation using Bacillus licheniformis was performed as the second step. The optimized fermentation conditions were temperature of 32.8 °C, pH 6.67, and inoculum concentration of 1.78 % using the response surface method. Results of this study showed a potential application in large-scale industrial conversion.  相似文献   

11.
Intensification of the surfactant synthesis by Rhodococcus erythropolis IMV Ac-5017 on different substrates, including industrial waste, as well as the use of surfactant preparations for oil degradation were studied. It was established that the addition of fumarate (0.2 %) and citrate (0.1 %) into the medium with ethanol, n-hexadecane, or glycerol (1–2 %) was accompanied by an increase of conditional surfactant concentration by 1.5–1.7 times compared to the indexes in the medium without organic acids. The intensification of surfactant synthesis in the presence of fumarate and citrate is caused by the increased activity of isocitrate lyase (by 1.2–15-fold) and enzymes of the surfactant biosynthesis (by 2–4.8-fold) compared to their activity in the medium without precursors. The possibility of surfactant synthesis intensification (by 3–4-fold) while cultivating of R. erythropolis IMV Ac-5017 in the medium with oil containing substrates (2 %) and glucose (0.1 %) was shown. The introduction of 0.01 mM Cu2+ in the exponential growth phase of strain IMV Ac-5017 in the medium with ethanol accompanied by the increasing conditional surfactant concentration by 1.9 times. The highly efficient remediation (92–95 %) of oil (2–2.6 g/L) and Cu2+ polluted water after treatment with surfactant preparations (native cultural liquid) at low concentrations (5 %) was determined.  相似文献   

12.
To investigate the pharmacokinetics of ZS-1 following intravenous injection in rats, ZS-1 was administered at doses of 20, 30 and 45 mg kg?1, respectively. Blood samples were collected at 0.5, 3, 8, 12, 15, 20, 30, 40 and 45 min. ZS-1 in rat plasma was measured by LC. The limit of detection (LOD) was 0.02 μg mL?1. The relative standard deviation (RSD) of intra- and inter-day precisions were <10%, and the accuracy of intra- and inter-day were >94%. The mean extraction recovery of ZS-1 was 86.1%. After intravenous injection at doses of 20, 30 and 45 mg kg?1, the concentration–time curves of ZS-1 fitted well to one compartment model. Area under the concentration–time curves (AUC) increased with dose. Clearance rates (CL) and elimination half-lives (T 1/2) had no significant difference between different dose groups (P > 0.05). ZS-1 was stable in plasma after at 25 °C for 2, 4, 6 h, after three freeze–thaw cycles, after ?20 °C for a month, and after ?80 °C for 3 months. The accuracy of ZS-1 was between 96.8 and 106.9%. The results indicated there was no significant degradation. These data indicated that the method for analysis of ZS-1 was reliable and the pharmacokinetic data could guide dosing regimens to be tested in future clinical pharmacokinetic study.  相似文献   

13.
Hydrogen (H2) production from the organic fraction of solid waste such as fruit and vegetable waste (FVW) is a novel and feasible energy technology. Continuous application of this process would allow for the simultaneous treatment of organic residues and energy production. In this study, batch experiments were conducted using glucose as substrate, and data of H2 production obtained were successfully adjusted by a logistic model. The kinetic parameters (μ max?=?0.101 h?1, K s?=?2.56 g/L) of an H2-producing microbial culture determined by the Monod and Haldane–Andrews growth models were used to establish the continuous culture conditions. This strategy led to a productive steady state in continuous culture. Once the steady state was reached in the continuous reactor, a maximum H2 production of 700 mL was attained. The feasibility of producing H2 from the FVW obtained from a local market in Mexico City was also evaluated using batch conditions. The effect of the initial FVW concentration on the H2 production and waste organic material degradation was determined. The highest H2 production rate (1.7 mmol/day), the highest cumulative H2 volume (310 mL), and 25 % chemical oxygen demand (COD) removal were obtained with an initial substrate (FVW) concentration of 37 g COD/L. The lowest H2 production rates were obtained with relatively low initial substrate concentrations of 5 and 11 g COD/L. The H2 production rates with FVW were also characterized by the logistic model. Similar cumulative H2 production was obtained when glucose and FVW were used as substrates.  相似文献   

14.
This paper describes development and validation of a high-performance liquid chromatographic method for simultaneous analysis of tramadol hydrochloride (TR) and aceclofenac (AC) in a tablet formulation. When the combination formulation was subjected to ICH-recommended stress conditions, adequate separation of TR, AC, and the degradation products formed was achieved on a C18 column with 65:35 (v/v) 0.01 M ammonium acetate buffer, pH 6.5—acetonitrile as mobile phase at a flow rate of 1 mL min?1. UV detection was performed at 270 nm. The method was validated for specificity, linearity, LOD and LOQ, precision, accuracy, and robustness. The method was specific against placebo interference and also during forced degradation. The linearity of the method was investigated in the concentration ranges 15–60 μg mL?1 (r = 0.9999) for TR and 40–160 μg mL?1 (r = 0.9999) for AC. Accuracy was between 98.87 and 99.32% for TR and between 98.81 and 99.49% for AC. Because degradation products were well separated from the parent compounds, the method was stability-indicating.  相似文献   

15.
A silica-based adsorbent, (DtBuCH18C6 + dodecanol)/SiO2-P, which is used for selective separation of Sr(II) from high level liquid wastes, against temperature and gama-irradiation was investigated. The adsorption characteristics of Sr(II), Ba(II), La(III), Nd(III), Gd(III) and Dy(III) under varying nitric acid concentration at different temperatures were measured by batch method. The adsorbent showed higher distribution coefficients (K d) for Sr(II) compared to other tested metal ions, and the K d values of Sr(II) decreased with increasing temperature. Thermodynamic parameters of the adsorption process were calculated. The related parameters in adsorption isotherm models were obtained using a non-linear fitting. Uptake capacity from 0.38 to 0.43 mmol g?1 was obtained for Sr(II) in the temperature range of 298–323 K by the Langmuir equation fitting. The leakage of total organic carbon was below 120 ppm at 298 K and 180 ppm at 323 K, respectively. The degradation of the adsorbent irradiated in 2 M HNO3 was investigated. It is found that the adsorbed dose of γ-ray more than 50 KGy has a strong influence on K d of Sr(II). The K d values of Sr(II) decrease about 3 times ranged from 50 to 500 KGy.  相似文献   

16.
Corn stover silage (CSS) was pretreated by Phanerochaete chrysosporium in solid-state fermentation (SSF), to enhance methane production via subsequent anaerobic digestion (AD). Effects of washing of corn stover silage (WCSS) on the lignocellulosic biodegradability in the fungal pretreatment step and on methane production in the AD step were investigated with comparison to the CSS. It was found that P. chrysosporium had the degradation of cellulose, hemicellulose, and lignin of CSS up to 19.9, 32.4, and 22.6 %, respectively. Consequently, CSS pretreated by 25 days achieved the highest methane yield of 265.1 mL/g volatile solid (VS), which was 23.0 % higher than the untreated CSS. However, the degradation of cellulose, hemicellulose, and lignin in WCSS after 30 days of SSF increased to 45.9, 48.4, and 39.0 %, respectively. Surface morphology and Fourier-transform infrared spectroscopy analyses also demonstrated that the WCSS improved degradation of cell wall components during SSF. Correspondingly, the pretreatment of WCSS improved methane production by 19.6 to 32.6 %, as compared with untreated CSS. Hence, washing and reducing organic acids (such as lactic acid, acetic acid, propionic acid, and butyric acid) present in CSS has been proven to further improve biodegradability in SSF and methane production in the AD step.  相似文献   

17.
In the conversion of cassava starch dregs to biogas by anaerobic fermentation, the biogas residue (BR) containing lignocellulosic materials still remained in the environment. In order to effectively utilize BR, the complexed 1-methyl-3-methylimidazolium dimethyl phosphate ([Mmim]DMP) media were used for pretreating cellulosic materials. After the optimization of pretreatment, the IL [Mmim]DMP-HCl-water (78.5:1.5:20, w/w/w) pretreament media were used for pretreating BR at 130 °C for 30 min. Furthermore, BR pretreated could be effectively saccharified by cellulase of Galactomyces sp. CCZU11-1. Moreover, BR could be used as a cheap carbon source for the production of Galactomyces sp. CCZU11-1 cellulase. After the culture optimization, the optimal culture conditions were obtained as follows: BR 5 g/L, (NH4)2SO4 5 g/L, K2HPO4 2 g/L, MgSO4 0.2 g/L, NaCl 1 g/L, PEG6000 4 g/L, pH 5.5, and culture temperature 30 °C. After the fermentation for 6 days, the FPA and CMCase were 26.2 and 52.8 U/mL, respectively. In conclusion, waste BR could be chosen as a promising feedstock for biofuels.  相似文献   

18.
A Cu(II) coordination polymer, [Cu(L)(bdc)] n (L = 1,4-bis(imidazole)butane, bdc = 1,3-benzenedicarboxylate) has been hydrothermally synthesized and characterized by elemental analysis, IR spectrum, thermogravimetric analysis, and single-crystal X-ray diffraction. The complex is a rare example of a threefold parallel interpenetrated coordination bonding network based on undulant [Cu4(μ 2-L)2(μ 2-bdc)2] parallelograms with 44-sql layer. The heterogeneous catalytic activity of the complex was tested for the degradation of Congo red azo dye in a Fenton-like process in which the degradation efficiency reached 94 % after 100 min. Kinetic analysis indicates that the degradation rate of the dye can be approximated by pseudo-first-order kinetics.  相似文献   

19.
Mixed food waste, which was directly collected from restaurants without pretreatments, was used as a valuable feedstock in succinic acid (SA) fermentation in the present study. Commercial enzymes and crude enzymes produced from Aspergillus awamori and Aspergillus oryzae were separately used in hydrolysis of food waste, and their resultant hydrolysates were evaluated. For hydrolysis using the fungal mixture comprising A. awamori and A. oryzae, a nutrient-complete food waste hydrolysate was generated, which contained 31.9 g L?1 glucose and 280 mg L?1 free amino nitrogen. Approximately 80–90 % of the solid food waste was also diminished. In a 2.5 L fermentor, 29.9 g L?1 SA was produced with an overall yield of 0.224 g g?1 substrate using food waste hydrolysate and recombinant Escherichia coli. This is comparable to many similar studies using various wastes or by-products as substrates. Results of this study demonstrated the enormous potential of food waste as renewable resource in the production of bio-based chemicals and materials via microbial bioconversion.  相似文献   

20.
In this investigation, the Anaerobic Pump (®TAP) and a conventional continuous flow stirred tank reactor (CFSTR) were tested side by side to compare performance. TAP integrates anaerobic digestion (AD) with biogas plasticization–disruption cycle to improve mass conversion to methane. Both prototypes were fed a “real world” 50:50 mixture of waste-activated sludge (WAS) and primary sludge and operated at room temperature (20°C). The quantitative results from three steady states show TAP peaked at 97% conversion of the particulate COD in a system hydraulic residence time (HRT) of only 6 days. It achieved a methane production of 0.32 STP cubic meter CH4 per kilogram COD fed and specific methane yield of 0.78 m3 CH4 per cubic meter per day. This was more than three times the CFSTR specific methane yield (0.22 m3 CH4 per cubic meter per day) and more than double the CFSTR methane production (0.15 m3 CH4 per kilogram COD fed). A comparative kinetics analysis showed the TAP peak substrate COD removal rate (R o) was 2.24 kg COD per cubic meter per day, more than three times the CFSTR substrate removal rate of 0.67 kg COD per cubic meter per day. The three important factors contributing to the superior TAP performance were (1) effective solids capture (96%) with (2) mass recycle and (3) stage II plasticization–disruption during active AD. The Anaerobic Pump (®TAP) is a high rate, high efficiency–low temperature microbial energy engine that could be used to improve renewable energy yields from classic AD waste substrates like refuse-derived fuels, treatment plant sludges, food wastes, livestock residues, green wastes and crop residuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号