首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Substituted propargyl acetates are converted into 4‐boryl‐2(5H)‐furanones upon thermolysis in the presence of an N‐heterocyclic carbene borane (NHC‐borane) and di‐tert‐butyl peroxide. The acetyl methyl group is lost during the reaction as methane. Evidence suggests that the reaction proceeds by a sequence of radical events including: 1) addition of an NHC‐boryl radical to the triple bond; 2) cyclization of the resultant β‐borylalkenyl radical to the ester carbonyl group; 3) β‐scission of the so‐formed alkoxy radical to provide the 4‐boryl‐2(5H)‐furanone and a methyl radical; and 4) hydrogen abstraction from the NHC‐borane to return the initial NHC‐boryl radical and methane.  相似文献   

2.
1,3‐Dimethylimidazol‐2‐ylidene difluoroborane (NHC‐BF2H) was prepared in a one‐pot, two‐step reaction from the parent ligated borane (NHC‐BH3). The derived difluoroboryl radical (NHC‐BF2.) was generated by laser flash photolysis experiments and characterized by UV spectroscopy and rate‐constant measurements. It is transient and reacts quickly with O2. Unusually, it also reacts more rapidly with ethyl vinyl ether than with methyl acrylate. By this measure, it is the first electrophilic ligated boryl radical. Both NHC‐BH3 and NHC‐BF2H serve as co‐initiators in bulk photopolymerizations, converting both electron‐poor and electron‐rich monomers at roughly similar rates. However, the difluorinated coinitiator provides polymers with dramatically increased chain lengths from both monomers.  相似文献   

3.
The reaction of the 2‐(trimethylsilyl)imidazolium triflate 9 with diarylboron halides (4‐R‐C6H4)2BX (R=H, X=Br; R=CH3, X=Cl; R=CF3, X=Cl) afforded the NHC‐stabilized borenium cations 10 a – c . Cyclic voltammetry revealed a linear correlation between the Hammett parameter σ p of the para substituent and the half‐wave potential. Chemical reduction with decamethylcobaltocene, [(C5Me5)2Co], furnished the corresponding radicals 11 a – c ; their characterization by EPR spectroscopy confirmed the paramagnetic character of 11 a – c , with large hyperfine coupling constants to the boron isotopes 11B and 10B, while delocalization of the unpaired electron into the NHC is negligible. DFT calculations of the percentage of spin density distribution between the carbene (NHC) and the boryl fragments (BR2) revealed for 11 a – c a spin density ratio (BR2/NHC) of ca. 9:1, which underlines their distinct boryl radical character. The molecular structure of the most stable species 11 c was established by X‐ray diffraction analysis.  相似文献   

4.
A novel strategy for the expedient construction of CF3‐embeded tertiary/quarternary carbon centers was developed by taking advantage of photoredox catalysis. Thanks to a key step of single‐electron oxidation, electron‐rich gem‐difluoroalkenes, which otherwise are essentially reluctant towards F‐nucleoplilic addition, now readily participate in this fluoroallylation reaction. Furthermore, this strategy provides an elegant example for the generation, as well as functionalization, of α‐CF3‐substituted benzylic radical intermediates using cheap and readily available starting materials.  相似文献   

5.
Hydroboration of internal alkynes with N‐heterocyclic carbene boranes (NHC‐boranes) occurs to provide stable NHC (E)‐alkenylboranes upon thermolysis in the presence of di‐tert‐butyl peroxide. The E isomer results from an unusual trans‐hydroboration, and the E/Z selectivity is typically high (90:10 or greater). Evidence suggests that this hydroboration occurs by a radical‐chain reaction involving addition of an NHC‐boryl radical to an alkyne to give a β‐NHC‐borylalkenyl radical. Ensuing hydrogen abstraction from the starting NHC‐borane provides the product and returns the starting NHC‐boryl radical. Experiments suggest that the observed trans‐selectivity results from kinetic control in the hydrogen‐transfer reaction.  相似文献   

6.
Reported herein is the use of S‐perfluoroalkyl sulfilimino iminiums as a new source of RF radicals under visible‐light photoredox catalysis (RF=CF3, C4F9, CF2Br, CFCl2). These shelf‐stable perfluoroalkyl reagents, readily prepared on gram scale from the corresponding sulfoxide using a one‐pot procedure, allow the efficient photoredox‐induced oxyperfluoroalkylation of various alkenes using fac‐Ir(ppy)3 as the photocatalyst. Importantly, spin‐trapping/electron paramagnetic resonance experiments were carried out to characterize all the radical intermediates involved in this radical/cationic process.  相似文献   

7.
Boryl radicals have the potential for the development of new molecular entities and for application in new radical reactions. However, the effects of the substituents and coordinating Lewis bases on the reactivity of boryl radicals are not fully understood. By using first‐principles methods, we investigated the spin‐density distribution and reactivity of a series of boryl radicals with various substituents and Lewis bases. The substituents, along with the Lewis bases, only affect the radical reactivity when an unpaired electron is in the boron pz orbital, that is, for three‐coordinate radicals. We found evidence of synergistic effects between the substituents and the Lewis bases that can substantially broaden the tunability of the reactivity of the boryl radicals. Among Lewis bases, pyridine and imidazol‐2‐ylidene show a similar capacity for stabilization by delocalizing the spin density. Electron‐donating substituents, such as nitrogen, more efficiently stabilize boryl radicals than oxygen and carbon atoms. The reactivity of a boryl radical is always boron based, irrespective of the spin density on boron.  相似文献   

8.
The synthesis and reactivity of mono‐ and bis‐S‐xanthyl NHC‐boranes is reported. The new NHC‐boranes are prepared through nucleophilic exchange at boron from either mono‐ or bis‐triflyl NHC‐boranes, themselves obtained by protolysis of the NHC‐BH3 starting compounds. The B?H bond of the S‐xanthyl NHC‐boranes can be cleaved both homolytically and heterolytically, albeit the latter is more synthetically useful. The S‐xanthyl NHC‐boranes can reduce both aldehydes and imines. The B?S bond can also be cleaved homolytically. Under UV irradiation, the S‐xanthyl NHC‐boranes generate NHC‐boryl radicals that can initiate radical polymerizations of acrylates.  相似文献   

9.
The visible‐light‐promoted decarboxylation of α‐imino‐oxy propionic acids for the generation of iminyl radicals has been accomplished through the use of Ir(dFCF3ppy)2(dtbbpy)PF6 as a photoredox catalyst. Different from visible‐light‐promoted homolysis and single‐electron reduction of oxime derivatives, this strategy provides a novel catalytic cycle for alkene carboimination through a sequence comprising N‐radical generation, iminyl radical cyclization, intermolecular conjugate addition to a Michael acceptor, and single‐electron reduction to afford various pyrroline derivatives in an overall redox‐neutral process. The indolizidine alkaloid skeleton could be easily constructed from a pyrroline derivative prepared by this synthetic method.  相似文献   

10.
A kinetic study of the dodecanethiol‐catalyzed cis/trans isomerization of methyl oleate (cis‐ 2 ) without added initiator was performed by focusing on the initiation of the radical chain reaction. The reaction orders of the rate of isomerization were 2 and 0.5 for 1 and cis‐ 2 , respectively, and an overall kinetic isotope effect kH/kD of 2.8 was found. The initiation was shown to be a complex reaction. The electron‐donor/‐acceptor (EDA) complex of dodecanethiol ( 1 ) and cis‐ 2 formed in a pre‐equilibrium reacts with thiol 1 to give a stearyl and a sulfuranyl radical through molecule‐assisted homolysis (MAH) of the sulfur–hydrogen bond. Fragmentation of the latter gives the thiyl radical, which catalyzes the cis/trans isomerization. A computational study of the EDA complex, MAH reaction, and the sulfuranyl radical calculated that the activation energy of the isomerization was in good agreement with the experimental result of EA=82 kJ M ?1. Overall, the results may explain that the thermal generation of thiyl radicals without any initiator is responsible for many well‐known thermally initiated addition reactions of thiol compounds to alkenes and their respective polymerizations and for the low shelf‐life stability of cis‐unsaturated thiol compounds and of mixtures of alkenes and thiol compounds.  相似文献   

11.
The visible‐light‐promoted diastereodivergent intramolecular oxyamination of alkenes is described to construct oxazolindinones, pyrrolidinones and imidazolidones via mild generation of primary amidyl radicals from functionalized hydroxylamines. A unique phenomenon of highly diastereoselective ring‐opening of aziridines controlled by electron sacrifices was observed. Highly diastereoselective amino alcohols derivatives were obtained efficiently through this protocol in gram scales. The mechanistic studies suggested the isolatable anti‐aziridine intermediates were generated quickly from primary amidyl radicals and the diastereoselectivities were controlled by pKa values of the electron sacrifices.  相似文献   

12.
Sulfonylation of alkenes through photoredox‐catalyzed functionalization of alkenes with thiourea dioxide under visible‐light irradiation is achieved. The reaction of alkenes, thiourea dioxide and electrophiles provides a green and efficient access to alkyl sulfones and sulfonamides. A broad reaction scope is presented with good functional group compatibility and excellent regioselectivity. A plausible mechanism involving a radical addition process with sulfur dioxide radical anion (SO2) derived from the oxidation of sulfur dioxide anion (SO22–) is proposed, which is supported by fluorescence quenching experiments.  相似文献   

13.
A novel method for selective generation of aryl radicals from diaryliodonium salts and iodanylidene malonates with sodium 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPONa) as a single‐electron transfer (SET) reducing reagent is described. In the presence of various alkenes, aryl radicals formed after SET‐reduction of hypervalent iodine compounds undergo alkene addition and the adduct radicals that are thus generated are efficiently trapped by the concomitantly generated TEMPO radical to eventually afford oxyarylated products in moderate to very good yields. The efficiency of aryl radical generation of various iodine(III) reagents is studied and the generation of an iodanylidene malonate aryl radical is also investigated by computational methods.  相似文献   

14.
The synthesis and physical characterization of a new class of N‐heterocycle–boryl radicals is presented, based on five membered ring ligands with a N(sp2) complexation site. These pyrazole–boranes and pyrazaboles exhibit a low bond dissociation energy (BDE; B?H) and accordingly excellent hydrogen transfer properties. Most importantly, a high modulation of the BDE(B?H) by the fine tuning of the N‐heterocyclic ligand was obtained in this series and could be correlated with the spin density on the boron atom of the corresponding radical. The reactivity of the latter for small molecule chemistry has been studied through the determination of several reaction rate constants corresponding to addition to alkenes and alkynes, addition to O2, oxidation by iodonium salts and halogen abstraction from alkyl halides. Two selected applications of N‐heterocycle–boryl radicals are also proposed herein, for radical polymerization and for radical dehalogenation reactions.  相似文献   

15.
The first catalytic enantioselective γ‐boryl substitution of CF3‐substituted alkenes is reported. A series of CF3‐substituted alkenes was treated with a diboron reagent in the presence of a copper(I)/Josiphos catalyst to afford the corresponding optically active γ,γ‐gem‐difluoroallylboronates in high enantioselectivity. The thus obtained products could be readily converted into the corresponding difluoromethylene‐containing homoallylic alcohols using highly stereospecific allylation reactions.  相似文献   

16.
The atom‐transfer carbonylation reaction of various alkyl iodides thereby leading to carboxylic acid esters was effectively accelerated by the addition of transition‐metal catalysts under photoirradiation conditions. By using a combined Pd/ reaction system, vicinal C‐functionalization of alkenes was attained in which α‐substituted iodoalkanes, alkenes, carbon monoxide, and alcohols were coupled to give functionalized esters. When alkenyl alcohols were used as acceptor alkenes, three‐component coupling reactions, which were accompanied by intramolecular esterification, proceeded to give lactones. Pd‐dimer complex [Pd2(CNMe)6][PF6]2, which is known to undergo homolysis under photoirradiation conditions, worked quite well as a catalyst in these three‐ or four‐component coupling reactions. In this metal/radical hybrid system, both Pd radicals and acyl radicals are key players and a stereochemical study confirmed the carbonylation step proceeded through a radical carbonylation mechanism.  相似文献   

17.
A boryl‐substituted diphosphene was synthesized through the nucleophilic borylation of PCl3 with a borylzinc reagent, followed by a reduction with Mg. A combined analysis of the resulting diboryldiphosphene by single‐crystal X‐ray diffraction, DFT calculations, and UV/Vis spectroscopy revealed a σ‐electron‐donating effect for the boryl substituent that was slightly weaker than that of the 2,4,6‐tri‐tert‐butylphenyl (Mes*) ligand. The reaction of this diboryldiphosphene with nBuLi afforded a boryl‐substituted phosphinophosphide that was, in comparison with the thermally unstable Mes*‐substituted diaryldiphosphene, stabilized by a π‐electron‐accepting effect of the boryl substituent.  相似文献   

18.
Popular and readily available alkenes and alkynes are good substrates for the preparation of functionalized molecules through radical and/or ionic addition reactions. Difunctionalization is a topic of current interest due to its high efficiency, substrate versatility, and operational simplicity. Presented in this article are radical addition followed by oxidation and nucleophilic addition reactions for difunctionalization of alkenes or alkynes. The difunctionalization could be accomplished through 1,2-addition (vicinal) and 1,n-addition (distal or remote) if H-atom or group-transfer is involved in the reaction process. A wide range of moieties, such as alkyl (R), perfluoroalkyl (Rf), aryl (Ar), hydroxy (OH), alkoxy (OR), acetatic (O2CR), halogenic (X), amino (NR2), azido (N3), cyano (CN), as well as sulfur- and phosphorous-containing groups can be incorporated through the difunctionalization reactions. Radicals generated from peroxides or single electron transfer (SET) agents, under photoredox or electrochemical reactions are employed for the reactions.  相似文献   

19.
A highly chemo‐ and regioselective intermolecular 1,2‐aryl‐aminoalkylation of alkenes by photoredox/nickel dual catalysis is described here. This three‐component conjunctive cross‐coupling is highlighted by its first application of primary alkyl radicals, which were not compatible in previous reports. The readily prepared α‐silyl amines could be transferred to α‐amino radicals by photo‐induced single electron transfer step. The radical addition/cross‐coupling cascade reaction proceeds under mild, base‐free and redox‐neutral conditions with good functional group tolerance, and importantly, provides an efficient and concise method for the synthesis of structurally valuable α‐aryl substituted γ‐amino acid derivatives motifs.  相似文献   

20.
A pyridine–pyridine coupling reaction has been developed between pyridyl phosphonium salts and cyanopyridines using B2pin2 as an electron‐transfer reagent. Complete regio‐ and cross‐selectivity are observed when forming a range of valuable 2,4′‐bipyridines. Phosphonium salts were found to be the only viable radical precursors in this process, and mechanistic studies indicate that the process does not proceed through a Minisci‐type coupling involving a pyridyl radical. Instead, a radical–radical coupling process between a boryl phosphonium pyridyl radical and a boryl‐stabilized cyanopyridine radical explains the C?C bond‐forming step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号