首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complexes of the type [M(pash)Cl] and [M(Hpash)(H2O)SO4] (M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); Hpash = p-amino acetophenone salicyloyl hydrazone) have been synthesized and characterized by elemental analyses, molar electrical conductance, magnetic moments, electronic, ESR and IR spectra, thermal studies and X-ray powder diffraction. All the complexes are insoluble in common organic solvents and are non-electrolytes. The magnetic moment values and electronic spectra indicate a square-planar geometry for Co(II), Ni(II) and Cu(II) chloride complexes and spin-free octahedral geometry for the sulfato complexes. The ligand coordinates through >C=N–,–NH2 and a deprotonated enolate group in all the chloro complexes, and through >C=N–, >C=O and–NH2 in the sulfato complexes. Thermal analyses (TGA and DTA) of [Cu(pash)Cl] show a multi-step exothermic decomposition pattern. ESR spectral parameters of Cu(II) complexes in solid state at room temperature suggest the presence of the unpaired electron in d x 2 ? y 2 . X-ray powder diffraction parameters for [Cu(pash)Cl] and [Ni(Hpash)(H2O)SO4] correspond to tetragonal and orthorhombic crystal lattices, respectively. The complexes show a fair degree of antifungal activity against Aspergillus sp., Stemphylium sp. and Trichoderma sp. and moderate antibacterial activity against E. coli and Clostridium sp.  相似文献   

2.
N,N-diethylnicotinamide-acetylsalicylato complexes of Co(II), Ni(II), Cu(II), and Zn(II) were synthesized and investigated by elemental analysis, magnetic susceptibility, solid state UV–Vis, direct injection probe mass spectra, FTIR spectra and thermoanalytic TG-DTG methods. The complexes contain two waters, two acetylsalicylate (asa) and two N,N-diethylnicotinamide (dena) ligands per formula unit. The acetylsalicylate and N,N-diethylnicotinamide are monodentate through acidic oxygen and nitrogen of pyridine ring. Decomposition of each complex starts with dehydration then decomposition of N,N-diethylnicotinamide and acetylsalicylate, respectively. The thermal dehydration of the complexes takes place in one or two steps. The decomposition mechanism and thermal stability of the investigated complexes are interpreted in terms of their structures. The final decomposition products are found to be metal oxides.  相似文献   

3.
Complexes of the type [M(painh)(H2O)2X], where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); X = Cl2 or SO4; painh = p-amino acetophenone isonicotinoyl hydrazone, have been synthesized and characterized by spectral and other physico-chemical techniques. The synthesized complexes are stable powders, insoluble in common organic solvents such as ethanol, benzene, carbon tetrachloride, chloroform and diethyl ether, and are non-electrolytes. Thermogravimetric Analysis (TGA) and Differential Thermal Analysis (DTA) studies show that the organic ligand decomposes exothermically through various steps. TGA and Infrared (IR) spectral studies indicate the presence of coordinated water in the metal complexes. Magnetic susceptibility measurements and electronic spectra suggest that Mn(II), Co(II), and Ni(II) complexes are paramagnetic with octahedral geometry, whereas Cu(II) complexes have distorted octahedral geometry. The neutral bidentate ligand bonds through >C=O and >C=N–groups in all the complexes. Electron Spin Resonance (ESR) spectra in the solid state show axial symmetry for [Cu(painh)(H2O)2(SO4)] and elongated rhombic symmetry for [Cu(painh)(H2O)2Cl2], suggesting an elongated tetragonally-distorted octahedral structure for both complexes. X-ray powder diffraction parameters for two complexes correspond to tetragonal and orthorhombic crystal lattices. The metal complexes show fair antifungal activity against Rizoctonia sp., Aspergillus sp., Stemphylium sp., and Penicillium sp. and appreciable antibacterial activity against Pseudomonas sp. and Escherichia coli.  相似文献   

4.
Infrared (IR), nuclear magnetic resonance (NMR), thermogravimetric analysis (TG), derivative thermogravimetric analysis (DTG), differential thermal analysis (DTA) and molar conductivity studies have been carried out on the chelates of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) with 3-methyl- and 3-phenyl-4-nitroso-5-pyrazolones. The solid chelates were synthesized, separated, analyzed and their structures were elucidated. The data obtained show that almost all of the prepared chelates contain water molecules in their coordination sphere. The initial stage in the thermal decomposition process of these chelates shows the presence of water molecule, the second denotes to the intermediate products. The final decomposition products were found to be the respective metal oxides. The NMR spectrum of 3-methyl-4-nitroso-5-pyrazolone ligand shows the existence of the oxime rather than the nitroso form. 3-phenyl-4-nitroso-5-pyrazolone acts as a neutral bidentate ligand whereas 3-methyl-4-nitroso-5-pyrazolone acts as monobasic bidentate ligand bonded to the metal ions through the two oxygen atoms of the carbonyl and nitroso groups. The solid chelates prepared behave as non-electrolytes in DMF solution. The coordination numbers of the obtained chelates using 3-methyl-4-nitroso-5-pyrazolone are four on applying the mole ratio 1:1 and six on using 1:2 mole ratio. In case of using the ligand 3-phenyl-4-nitroso-5-pyrazolone the coordination number is six in both cases. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Conditions for the preparation of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II)3,3-dimethylglutarates were investigated and their quantitative composition, solubility in water at 293 K and magnetic moments were determined. IR spectra and powder diffraction patterns of the complexes prepared with general formula MC7H10O4nH2O (n=0−2) were recorded and their thermal decomposition in air were studied. During heating the hydrated complexes of Mn(II),Co(II), Ni(II) and Cu(II) are dehydrated in one step and next all the anhydrous complexes decompose to oxides directly (Mn, Co, Zn) or with intermediate formation free metal (Ni,Cu) or oxocarbonates (Cd). The carboxylate groups in the complexes studied are bidentate. The magnetic moments for the paramagnetic complexes of Mn(II), Co(II), Ni(II) and Cu(II)attain values 5.62, 5.25, 2.91 and 1.41 M.B., respectively. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
A new heterocyclic compound N-(5-benzoyl-2-oxo-4-phenyl-2H-pyrimidin-1-yl)-oxalamic acid has been synthesized from N-amino pyrimidine-2-one and oxalylchloride. Bis-chelate complexes of the ligand were prepared from acetate/chloride salts of Cu(II), Co(II), Mn(II), Ni(II), Zn(II), Cd(II), and Pd(II) in methanol. The structures of the ligand and its metal complexes were characterized by microanalyses, IR, AAS, NMR, API-ES, UV-Vis spectroscopy, magnetic susceptibility, and thermogravimetric analyses. An octahedral geometry has been suggested for all the complexes, except for Pd(II) complex, in which the metal center is square planar. Each ligand binds using C(2)=O, HN, and carboxylate. The cyclic voltammograms of the ligand and the complexes are also discussed. The new synthesized compounds were evaluated for antimicrobial activities against Gram-positive, Gram-negative bacteria and fungi using the microdilution procedure. The Cu(II) complex displayed selective and effective antibacterial activity against one Gram-positive spore-forming bacterium (Bacillus cereus ATCC 7064), two Gram-positive bacteria (Staphylococcus aureus ATCC 6538 and S. aureus ATCC 25923) at 40–80 µg mL?1, but poor activity against Candida species. The Cu(II) complex might be a new antibacterial agent against Gram-positive bacteria.  相似文献   

7.
A new vic-dioxime ligand containing benzophenone hydrazone units, N′-(benzophenone hydrazone)glyoxime [LH2] has been prepared from benzophenone hydrazone and anti-chloroglyoxime in absolute ethanol. Mononuclear nickel(II), cobalt(II), copper(II), zinc(II), and cadmium(II) complexes were also synthesized. Ligand and complexes were characterized by elemental analyses, FT-IR, 1H NMR, and 13C NMR spectroscopy, magnetic moments, and DTA/TG techniques. On the basis of the magnetic and spectral evidences a square-planar geometry for Ni(II) and Cu(II) complexes, tetrahedral for Cd(II) and Zn(II) complexes, and octahedral for Co(II) complex were proposed. Redox behaviors of ligand and its complexes were also investigated by cyclic voltammetry at the glassy carbon electrode.  相似文献   

8.
New Schiff bases have been synthesized from benzofuran-2-carbohydrazide and benzaldehyde, [BPMC] or 3,4-dimethoxybenzaldehyde, [BDMeOPMC]; complexes of the type MLX2, where M = Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II), L = BPMC or BDMeOPMC and X = Cl, have been prepared. Structures have been elucidated on the basis of elemental analysis, conductance measurements, magnetic properties, spectral studies i.e., 1H NMR, electronic, ESR and IR studies show that the Schiff bases are bidentate through the azomethine nitrogen and oxygen of the carbonyl. We propose tentative structures for all of these complexes. The antifungal and antibacterial activities of the ligands and their metal complexes have been screened against fungi Aspergillus niger and Aspergillus fumigatus and against bacteria Escherichia coli and S. aurious.  相似文献   

9.
Some new metal(II) complexes, ML2[M = Co, Ni, Cu and Zn], of 2-acetylthiophene benzoylhydrazone ligand (HL) containing a trifunctional SNO-donor system have been synthesized and characterized on the basis of physicochemical data by elemental analysis, magnetic moment, molar conductance, thermogravimetric and spectroscopic (electronic, IR, 1H NMR and 13C NMR) data. The ligand functions as monobasic SNO tridentates where the deprotonated enolic form is preferred in the coordination producing distorted octahedral complexes.  相似文献   

10.
Four new copper(II) complexes of the composition [Cu(H2L)(H2O)] have been synthesized by template method from reaction of copper(II) acetate, succinoyldihydrazine and some o-hydroxy aromatic aldehydes and ketones in aqueous methanol media. The composition of the complexes has been established on the basis of data obtained from analytical and mass spectral studies. The structure of the complexes has been discussed in the light of molar conductance, magnetic moment, Uv-vis, EPR and IR spectral studies. All of the complexes are non-electrolyte in DMSO. The μeff values for the complexes fall in the region 1.76–1.85 BM which rules out the possibility of any M–M interaction in the structural unit of the complexes. The ligands coordinate to the metal centre in enol form through phenolate/naphtholate oxygen atoms and azomethine nitrogen atoms. The NMR spectra show that ligands are present in anti-cis configuration in uncoordinated state. In all of the complexes the copper centre adopts square pyramidal stereochemistry. The unpaired electron is present in dx2-y2 orbital in the ground state for copper centre in the complexes. The electron transfer reactions for the complexes have been studied by cyclic voltammetry.  相似文献   

11.
Hydrated nitrate and perchlorate salts of the transitional metal ions Co2+, Ni2+ and Cu2+ have been used to investigate the coordination capability of the octaaza macrocycle L derived from 2,6-diformylpyridine and diethylenetriamine. The synthesis of the metal complexes was carried out in 1:1 and 2:1 metal:ligand molar ratios, but dinuclear complexes were obtained in all cases due to the size of the 24-membered ligand. The complexes have been characterized by elemental analysis, molar conductivity, mass spectrometry, IR spectroscopy, diffuse reflectance and magnetic measurements. The dinuclear nature of the compounds was confirmed by X-ray diffraction. The crystal structures of [Ni2L(NO3)2](NO3)2, [Cu2L(NO3)4] and [Cu2L(ClO4)4], were determined.  相似文献   

12.
13.
Heteronuclear complexes containing oxorhenium(V), with Fe(III), Co(II), Ni(II), Cu(II), Cd(II) and UO2(VI) ions were prepared by the reaction of the complex ligands [ReO(HL1)(PPh3)(OH2)Cl]Cl (a) and/or [ReO(H2L2)(PPh3)(OH2)Cl]Cl (b), where H2L1?=?1-(2-hydroxyphenyl)butane-1,3-dione-3-(5,6-diphenyl-1,2,4-triazine-3-ylhydrazone) and H3L2?=?1-(2-hydroxyphenyl)butane-1,3-dione-3-(1H-benzimidazol-2-ylhydrazone), with transition and actinide salts. Heterodinuclear complexes of ReO(V) with Fe(III), Co(II), Ni(II), Cu(II) and Cd(II) were obtained using a 1?:?1 mole ratio of the complex ligand and the metal salt. Heterotrinuclear complexes were obtained containing ReO(V) with UO2(VI) and Cu(II) using 2?:?1 mole ratios of the complex ligand and the metal salts. The complex ligands a and b coordinate with the heterometal ion via a nitrogen of the heterocyclic ring and the nitrogen atom of the C=N7 group. All transition metal cations in the heteronuclear complexes have octahedral configurations, while UO2(VI)?complexes have distorted dodecahedral geometry. The structures of the complexes were elucidated by IR, ESR, electronic and 1H NMR spectra, magnetic moments, conductance and TG-DSC measurements. The antifungal activities of the complex ligands and their heteronuclear complexes towards Alternaria alternata and Aspergillus niger showed comparable behavior with some well-known antibiotics.  相似文献   

14.
The 2-methylimidazole complexes of Co(II), Ni(II), Cu(II) and Zn(II) orotates, mer-[Co(HOr)(H2O)2(2-meim)2] (1), mer-[Ni(HOr)(H2O)2(2-meim)2] (2), [Cu(HOr)(H2O)2(2-meim)] (3) and [Zn(HOr)(H2O)2(2-meim)] (4), were synthesized and characterized by elemental analysis, spectral (UV–Vis and FT-IR) methods, thermal analysis (TG, DTG and DTA), magnetic susceptibility, antimicrobial activity studies and single crystal X-ray diffraction technique. The complexes 1 and 2 have distorted octahedral geometries with two monodentate 2-methylimidazole and one bidentate orotate and two aqua ligands. The complexes 3 and 4 have distorted square pyramidal and trigonal bipyramidal geometry, respectively, with one 2-methylimidazole, bidentate orotate and aqua ligands. The orotate coordinated to the metal(II) ions through deprotonated nitrogen atom of pyrimidine ring and oxygen atom of carboxylate group as a bidentate ligand. The antimicrobial activities of 1 and 4 were found to be more active gram (+) than gram (−) and 4 could be use for treatment Staphylococcus aureus.  相似文献   

15.
The protonation constants of two nitro-Schiff bases SB1, SB2 and three asymmetric tetradentate diimines H2L1, H2L2 and H2L3 and the stability constants of their ML type binuclear Ni(II) and Fe(III) complexes have been determined potentiometrically. The asymmetric diimines are (2OH) RCHNC6H4CHNR′ (2OH) type compounds [where R = R′ = phenyl for H2L1; R = naphthyl, R′ = phenyl for H2L2 and R = R′ = naphthyl for H2L3]. The effect of tautomeric forms on the acid-base properties of the diimines has been investigated and discussed. In addition, dimeric and binuclear Ni(II) and Fe(III) complexes of the diimines have been synthesized and characterized by physical and spectroscopic techniques. Also, in vitro antimicrobial activities of the diimines and the complexes have been evaluated against three bacteria: Micrococcus luteus (NRLL B-4375), Bacillus cereus (RSKK 863), Escherichia coli (ATCC 11230) and the fungus: Candida albicans (ATCC 10239).  相似文献   

16.
Abstract

Five new coordination complexes [MnII (L1)2(4,4′-bpy)]n (1), [NiII (L1)2(4,4′-bpy)]n (2), [ZnII (L1)2(4,4′-bpy)]n (3), [CuII (L1)2(phen)2]Cl2 (4) and [CuII 2(L1)2(2,2′-bpy)2]Cl2 (5) (HL1?=?3,4,5-trifluorobenzeneseleninic acid, 4,4′-bpy = 4,4′-bipyridine, 2,2′-bpy = 2,2′-bipyridine and phen = 1,10-phenanthroline), have been synthesized and characterized by single-crystal X-ray diffraction, powder X-ray diffraction (PXRD), elemental analysis and IR spectroscopy. Complexes 13 display similar layers structures. In 13, the adjacent layers are further connected through π···π interactions to form three-dimensional supramolecular structures. Complexes 4 and 5 show a dimer containing an eight-membered ring. The dimer extends into three-dimensional supramolecular structures through π···π interactions, C–H···F and C–H···Cl interactions.  相似文献   

17.
Cobalt(II), nickel(II), copper(II) and zinc(II) complexes of 2-thiophenecarbonyl hydrazone of 3-isatin (H2L1) and 2-furoic hydrazones of 3-isatin (H2L2) and 3-(N-methyl)isatin (HL3), with general composition [M(L)2] · nX, where X is ethanol or/and water, were synthesised and characterised. The molecular structure of HL3 showed that it crystallised in the keto form, which is also the more abundant tautomer for the three hydrazone ligands in solution. The three ligands behave as κ2-O,N donors in the cobalt(II) and zinc(II) complexes. The X-ray crystal structure of pseudotetrahedral [Zn(HL1)2] · 1.75MeOH confirmed the O,N coordination mode of the two monodeprotonated ligands in their keto forms. Secondary interactions of zinc ions with the O atoms of each isatin keto residue provoke a substantial distortion towards a square pyramidal form. The interaction of the isatin keto residues is stronger in the three nickel(II) complexes where the three acylhydrazones can be considered as κ3-O,N,O donors.  相似文献   

18.
New seven complexes of N1,N6‐bis((2‐hydroxynaphthalin‐1‐yl)methinyl))adipohydrazone (H2L) with MnCl2•4H2O, CoCl2•6H2O, NiCl2•6H2O, CuCl2•2H2O, Cu(NO3)2•3H2O, CuSO4•5H2O, and Cu(OAc)2•2H2O have been prepared and characterized by the aid of elemental and thermal analyses, spectra (FT‐IR, 1H NMR, MS, UV‐Vis, ESR, X‐ray powder diffraction), molar conductance and magnetic moment measurements. The XRD results unambiguously confirmed the nano‐sized particles of the complexes. The results showed that H2L behaves as dibasic tetra‐dentate ligand towards the metal ions of interest. The low molar conductance values revealed the non‐electrolytic nature for the chelates. The magnetic moment data, UV‐Vis and ESR spectra denoted the formation of octahedral geometries for Mn(II) and Ni(II) complexes, whereas Co(II), Cu(II) complexes exhibited tetrahedral arrangement. The activation parameters for the thermal decomposition stages were calculated from TGA curves using Coats‐Redfern and Horowitz–Metzger methods. The obtained data were confirmed by 3‐D molecular modeling of the ligand and some complexes. The investigated compounds were screened for their antimicrobial activities against different types of organisms and antitumor activities towards human liver Carcinoma (HEPG2) cell to access their potential chemotherapeutic use. The free ligand (H2L) exhibited a weak inhibition of cell viability with IC50 of 11.80 μg/ml, complexes 4 , 6 and 7 showed a moderate activity with IC50 of 5.56, 7.71 and 5.67 μg/ml, whereas complexes 1 , 2 , 3 , and 5 displayed a strong anticancer activity with IC50 of 4.65, 3.97, 3.30 and 4.84 μg/ml, compared with IC50 value of 4.73 μg/ml for the doxorubicin (standard cytotoxin drug).  相似文献   

19.
The cobalt, nickel, copper and zinc atoms in bis(1,10-phenanthroline)bis(salicylato-O)metal(II) monomeric octahedral complexes [M(Hsal)2(phen)2nH2O, (M: Co(II), n=1; Cu(II), n=1.5 and Ni(II), Zn(II), n=2) are coordinated by the salicylato monoanion (Hsal) through the carboxyl oxygen in a monodentate fashion and by the 1,10-phenanthroline (phen) molecule through the two amine nitrogen atoms in a bidentate chelating manner. On the basis of the DTGmax, the thermal stability of the hydrated complexes follows order: Ni(II) (149°C)>Co(II) (134°C)>Zn(II) (132°C)>Cu(II) (68°C) in static air atmosphere. In the second stage, the pyrolysis of the anhydrous complexes takes place. The third stage of decomposition is associated with a strong exothermic oxidation process (DTA curves: 410, 453, 500 and 450°C for the Co(II), Ni(II), Cu(II) and Zn(II) complexes, respectively). The final decomposition products, namely CoO, NiO, CuO and ZnO, were identified by IR spectroscopy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Complexes of vanillin thiosemicarbazone (3-methoxy-4-hydroxybenzaldehyde thiosemicarbazone), (vtsch) with several divalent metal ions have been isolated. Structures have been assigned to these complexes based on electrical conductivity, magnetic susceptibility and spectroscopic measurements  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号