首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly selective recognition of metal ions by rational ligand design is challenging, and simple metal binding by biological ligands is often obscured by nonspecific interactions. In this work, binding-triggered catalysis is used and metal selectivity is greatly increased by increasing the number of metal ions involved, as exemplified in a series of in vitro selected RNA-cleaving DNAzymes. The cleavage junction is modified with a glycyl–histidine-functionalized tertiary amine moiety to provide multiple potential metal coordination sites. DNAzymes that bind 1, 2, and 3 Zn2+ ions, increased their selectivity for Zn2+ over Co2+ ions from approximately 20-, 1000-, to 5000-fold, respectively. This study offers important insights into metal recognition by combining rational ligand design and combinatorial selection, and it provides a set of new DNAzymes with excellent selectivity for Zn2+ ions.  相似文献   

2.
Genetically encoded fluorescent proteins (FPs) have been used for metal ion detection. However, their applications are restricted to a limited number of metal ions owing to the lack of available metal‐binding proteins or peptides that can be fused to FPs and the difficulty in transforming the binding of metal ions into a change of fluorescent signal. We report herein the use of Mg2+‐specific 10–23 or Zn2+‐specific 8–17 RNA‐cleaving DNAzymes to regulate the expression of FPs as a new class of ratiometric fluorescent sensors for metal ions. Specifically, we demonstrate the use of DNAzymes to suppress the expression of Clover2, a variant of the green FP (GFP), by cleaving the mRNA of Clover2, while the expression of Ruby2, a mutant of the red FP (RFP), is not affected. The Mg2+ or Zn2+ in HeLa cells can be detected using both confocal imaging and flow cytometry. Since a wide variety of metal‐specific DNAzymes can be obtained, this method can likely be applied to imaging many other metal ions, expanding the range of the current genetically encoded fluorescent protein‐based sensors.  相似文献   

3.
Studies of double‐stranded‐DNA binding have been performed with three isomeric bis(2‐(n‐pyridyl)‐1H‐benzimidazole)s (n=2, 3, 4). Like the well‐known Hoechst 33258, which is a bisbenzimidazole compound, these three isomers bind to the minor groove of duplex DNA. DNA binding by the three isomers was investigated in the presence of the divalent metal ions Mg2+, Co2+, Ni2+, Cu2+, and Zn2+. Ligand–DNA interactions were probed with fluorescence and circular dichroism spectroscopy. These studies revealed that the binding of the 2‐pyridyl derivative to DNA is dramatically reduced in the presence of Co2+, Ni2+, and Cu2+ ions and is abolished completely at a ligand/metal‐cation ratio of 1:1. Control experiments done with the isomeric 3‐ and 4‐pyridyl derivatives showed that their binding to DNA is unaffected by the aforementioned transition‐metal ions. The ability of 2‐(2‐pyridyl)benzimidazole to chelate metal ions and the conformational changes of the ligand associated with ion chelation probably led to such unusual binding results for the ortho isomer. The addition of ethylenediaminetetraacetic acid (EDTA) reversed the effects completely.  相似文献   

4.
A new ratiometric fluorescent sensor ( 1 ) for Cu2+ based on 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BODIPY) with di(2‐picolyl)amine (DPA) as ion recognition subunit has been synthesized and investigated in this work. The binding abilities of 1 towards different metal ions such as alkali and alkaline earth metal ions (Na+, K+, Mg2+, Ca2+) and other metal ions ( Ba2+, Zn2+, Cd2+, Fe2+, Fe3+, Pb2+, Ni2+, Co2+, Hg2+, Ag+) have been examined by UV‐vis and fluorescence spectroscopies. 1 displays high selectivity for Cu2+ among all test metal ions and a ~10‐fold fluorescence enhancement in I582/I558 upon excitation at visible excitation wavelength. The binding mode of 1 and Cu2+ is a 1:1 stoichiometry determined via studies of Job plot, the nonlinear fitting of the fluorometric titration and ESI mass.  相似文献   

5.
Highly selective and low‐cost optical nanosensors of organic–inorganic hybrid materials for heavy metal ions detection have been prepared via the functionalization of mesoporous silica (SBA‐16) with chalcone fluorescent chromophores. The successful attachment of organic chalcone moieties and preservation of original structure of SBA‐16 after the anchoring process were confirmed by extensive characterizations using various techniques like Fourier transform infrared and UV–visible spectroscopies, transmission electron microscopy, nitrogen adsorption–desorption isotherms, low‐angle X‐ray diffraction and thermogravimetric analysis. The colorimetric behaviour, selectivity and sensitivity were also investigated. The optical nanosensors respond selectively to heavy metal ions, such as Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+, with observable colour changes in 0.01 M Tris–HCl aqueous buffer solution. Also, the optical sensing ability of the investigated nanosensors to the mentioned metal ions was investigated using steady‐state absorption and emission techniques. Significant increase in the absorption spectra and a static quenching in the emission spectra are observed upon adding various concentrations of the studied metal ions. The spectral changes as well as the observable colour changes suggest that the investigated nanosensors are suitable for simple, economic, online analysis and remote design of these toxic metal ions with fast kinetic responses. Finally, the low detection limits for all the studied metals are in good agreement with those recommended by both the US Environmental Protection Agency and World Health Organization, except for Hg2+ and Cd2+, indicating that the investigated nanosensors have hypersensitivity, selectivity and better recognition for all the studied metal ions.  相似文献   

6.
The synthesis of a new ligand (L1) containing two 1,4,7‐triazacyclononane ([9]aneN3) moieties linked by a 4,5‐dimethylenacridine unit is reported. The binding and fluorescence sensing properties toward Cu2+, Zn2+, Cd2+, and Pb2+ of L1 and receptor L2, composed of two [9]aneN3 macrocycles bridged by a 6,6′′‐dimethylen‐2,2′:6′,2′′‐terpyridine unit, have been studied by coupling potentiometric, UV/Vis absorption, and emission measurements in aqueous media. Both receptors can selectively detect Zn2+ thanks to fluorescence emission enhancement upon metal binding. The analysis of the binding and sensing properties of the Zn2+ complexes toward inorganic anions revealed that the dinuclear Zn2+ complex of L1 selectively binds and senses the triphosphate anion (TP), whereas the mononuclear Zn2+ complex of L2 displays selective recognition of diphosphate (DP). Binding of TP or DP induces emission quenching of the Zn2+ complexes with L1 and L2, respectively. These results are exploited to discuss the role played by pH, number of coordinated metal cations, and binding ability of the bridging units in metal and/or anion coordination and sensing.  相似文献   

7.
The novel N‐1‐sulfonylcytosine‐cyclam conjugates 1 and 2 conjugates are ionized by electrospray ionization mass spectrometry (ESI MS) in positive and negative modes (ES+ and ES) as singly protonated/deprotonated species or as singly or doubly charged metal complexes. Their structure and fragmentation behavior is examined by collision induced experiments. It was observed that the structure of the conjugate dictated the mode of the ionization: 1 was analyzed in ES mode while 2 in positive mode. Complexation with metal ions did not have the influence on the ionization mode. Zn2+ and Cu2+ complexes with ligand 1 followed the similar fragmentation pattern in negative ionization mode. The transformation from 2°‐amine in 1 to 3°‐amine of cyclam ring in 2 leads to the different fragmentation patterns due to the modification of the protonation priority which changed the fragmentation channels within the conjugate itself. Cu2+ ions formed complexes practically immediately, and the priority had the cyclam portion of the ligand 2 . The structure of the formed Zn2+ complexes with ligand 2 depended on the number of 3° amines within the cyclam portion of the conjugate and the ratio of the metal:ligand used. The cleavage of the cyclam ring of metal complexes is driven by the formation of the fragment that suited the coordinating demand of the metal ions and the collision energy applied. Finally, it was shown that the structure of the cyclam conjugate dictates the fragmentation reactions and not the metal ions.  相似文献   

8.
The complexation reaction between Zn2+, Pb2+, Cd2+ and Tl+ cations by 5,7‐diiodo‐8‐hydroxyquinoline (IQN) was studied in the Dimethylformamide /Acetonitril (DMF‐AN) binary system using square wave polarography technique. The stoichiometry and stability of the complexes were determined by monitoring the shifts in half‐wave or peak potential of the polarographic waves of metal ions against the ligand concentration. The stoichiometry of the complexes was found to be 1:1. The results obtained show that there is an inverse relationship between the formation constant of the complexes and the donor number of solvent base on the Guttmann donocity scale. In all cases the formation constants increased with increasing amounts of AN in these binary systems. The selectivity order for IQN complexes with the cations is Zn2+ > Pb2+ > Cd2+ > Tl+.  相似文献   

9.
A chemo‐sensor [Ru(bpy)2(bpy‐DPF)](PF6)2 ( 1 ) (bpy=2,2′‐bipyridine, bpy‐DPF=2,2′‐bipyridyl‐4,4′‐bis(N,N‐di(2‐picolyl))formylamide) for Cu2+ using di(2‐picolyl)amine (DPA) as the recognition group and a ruthenium(II) complex as the reporting group was synthesized and characterized successfully. It demonstrates a high selectivity and efficient signaling behavior only for Cu2+ with obvious red‐shifted MLCT (metal‐to‐ligand charge transfer transitions) absorptions and dramatic fluorescence quenching compared with Zn2+ and other metal ions.  相似文献   

10.
The Schiff base ligand, 1‐phenyl‐3‐methyl‐5‐hydroxypyrazole‐4‐methylene‐8′‐quinolineimine, and its CuII, ZnII, and NiII complexes were synthesized and characterized. The crystal structure of the ZnII complex was determined by single‐crystal X‐ray diffraction, indicating that the metal ions and Schiff base ligand can form mononuclear six‐coordination complexes with 1:1 metal‐to‐ligand stoichiometry at the metal ions as centers. The binding mechanism and affinity of the ligand and its metal complexes to calf thymus DNA (CT DNA) were investigated by UV/Vis spectroscopy, fluorescence titration spectroscopy, EB displacement experiments, and viscosity measurements, indicating that the free ligand and its metal complexes can bind to DNA via an intercalation mode with the binding constants at the order of magnitude of 105–106 M –1, and the metal complexes can bind to DNA more strongly than the free ligand alone. In addition, antioxidant activities of the ligand and its metal complexes were investigated through scavenging effects for hydroxyl radical in vitro, indicating that the compounds show stronger antioxidant activities than some standard antioxidants, such as mannitol. The ligand and its metal complexes were subjected to cytotoxic tests, and experimental results indicated that the metal complexes show significant cytotoxic activity against lung cancer A 549 cells.  相似文献   

11.
A new 3,5‐disubstituted pyridine with two porphyrin moieties was prepared through an efficient synthetic approach involving 2‐formyl‐5,10,15,20‐tetraphenylporphyrin ( 1 ), piperidine, and catalytic amounts of [La(OTf)3]. 3,5‐Bis(5,10,15,20‐tetraphenylporphyrin‐2‐ylmethyl)pyridine ( 2 ) was fully characterized and its sensing ability towards Zn2+, Cu2+, Hg2+, Cd2+, and Ag+ was evaluated in solution by absorption and fluorescence spectroscopy and in gas phase by using matrix‐assisted laser desorption/ionization (MALDI)‐TOF mass spectrometry. Strong changes in the ground and excited state were detected in the case of the soft metal ions Zn2+, Cd2+, Hg2+, and Cu2+. A three‐metal‐per‐ligand molar ratio was obtained in all cases and a significant ratiometric behavior was observed in the presence of Zn2+ with the appearance of a new band at 608 nm, which can be assigned to a metal‐to‐ligand charge transfer. The system was able to quantify 79 ppb of Zn2+ and the theoretical calculations are in accordance with the stoichiometry observed in solution. The gas‐phase sensorial ability of compound 2 towards all metal ions was confirmed by using MALDI‐TOF MS and in solid state by using polymeric films of polymethylmethacrylate (PMMA) doped with ligand 2 . The results showed that compound 2 can be analytically used to develop new colorimetric molecular devices that are able to discriminate between Hg2+ and Zn2+ in solid phase. The crystal structure of ZnII complex of 3,5‐bisporphyrinylpyridine was unequivocally elucidated by using single‐crystal X‐ray diffraction studies.  相似文献   

12.
Genetically encoded fluorescent proteins (FPs) have been used for metal ion detection. However, their applications are restricted to a limited number of metal ions owing to the lack of available metal-binding proteins or peptides that can be fused to FPs and the difficulty in transforming the binding of metal ions into a change of fluorescent signal. We report herein the use of Mg2+-specific 10–23 or Zn2+-specific 8–17 RNA-cleaving DNAzymes to regulate the expression of FPs as a new class of ratiometric fluorescent sensors for metal ions. Specifically, we demonstrate the use of DNAzymes to suppress the expression of Clover2, a variant of the green FP (GFP), by cleaving the mRNA of Clover2, while the expression of Ruby2, a mutant of the red FP (RFP), is not affected. The Mg2+ or Zn2+ in HeLa cells can be detected using both confocal imaging and flow cytometry. Since a wide variety of metal-specific DNAzymes can be obtained, this method can likely be applied to imaging many other metal ions, expanding the range of the current genetically encoded fluorescent protein-based sensors.  相似文献   

13.
The Zn inactive class of glyoxalase I (Glo1) metalloenzymes are typically homodimeric with two metal‐dependent active sites. While the two active sites share identical amino acid composition, this class of enzyme is optimally active with only one metal per homodimer. We have determined the X‐ray crystal structure of GloA2, a Zn inactive Glo1 enzyme from Pseudomonas aeruginosa. The presented structures exhibit an unprecedented metal‐binding arrangement consistent with half‐of‐sites activity: one active site contains a single activating Ni2+ ion, whereas the other contains two inactivating Zn2+ ions. Enzymological experiments prompted by the binuclear Zn2+ site identified a novel catalytic property of GloA2. The enzyme can function as a Zn2+/Co2+‐dependent hydrolase, in addition to its previously determined glyoxalase I activity. The presented findings demonstrate that GloA2 can accommodate two distinct metal‐binding arrangements simultaneously, each of which catalyzes a different reaction.  相似文献   

14.
Novel 4‐hydroxyquinoline (4HQ) based tautomeric switches are reported. 4HQs equipped with coordinative side arms (8‐arylimino and 3‐piperidin‐1‐ylmethyl groups) were synthesized to access O or N‐selective chelation of Zn2+ and Cd2+ ions by 4HQ. In the case of the monodentate arylimino group, O chelation of metal ions induces concomitant switching of phenol tautomer to the keto form in nonpolar or aprotic media. This change is accompanied by selective and highly sensitive fluorometric sensing of Zn2+ ions. In the case of the bidentate 8‐(quinolin‐8‐ylimino)methyl side arm, NMR studies in CD3OD indicated that both Cd2+ and Zn2+ ions afford N chelation for 4HQ, coexisting with tautomeric switching from quinolin‐4(1H)‐one to quinolin‐4‐olate. In corroboration, UV/Vis‐monitored metal‐ion titrations in toluene and methanol implied similar structural changes. Additionally, fluorescence measurements indicated that the metal‐triggered tautomeric switching is associated with compound signaling properties. The results are supported by DFT calculations at the B3LYP 6‐31G* level. Several X‐ray structures of metal‐free and metal‐chelating 4HQ are presented to support the solution studies.  相似文献   

15.
Near‐IR (NIR) emission can offer distinct advantages for both in vitro and in vivo biological applications. Two NIR fluorescent turn‐on sensors N,N′‐di‐n‐butyl‐2‐(N‐{2‐[bis(pyridin‐2‐ylmethyl)amino]ethyl})‐6‐(N‐piperidinyl)naphthalene‐1,4,5,8‐tetracarboxylic acid bisimide and N,N′‐di‐ n‐butyl‐2‐[N,N,N′‐tri(pyridin‐2‐ylmethyl)amino]ethyl‐6‐(N‐piperidinyl)naphthalene‐1,4,5,8‐tetracarboxylic acid bisimide (PND and PNT) for Zn2+ based on naphthalenediimide fluorophore are reported. Our strategy was to choose core‐substituted naphthalenediimide (NDI) as a novel NIR fluorophore and N,N‐di(pyridin‐2‐ylmethyl)ethane‐1,2‐diamine (DPEA) or N,N,N′‐tri(pyridin‐2‐ylmethyl)ethane‐1,2‐diamine (TPEA) as the receptor, respectively, so as to improve the selectivity to Zn2+. In the case of PND, the negligible shift in absorption and emission spectra is strongly suggestive that the secondary nitrogen atom (directly connected to the NDI moiety, N1) is little disturbed with Zn2+. The fluorescence enhancement of PND with Zn2+ titration is dominated with a typical photoinduced electron‐transfer (PET) process. In contrast, the N1 atom for PNT can participate in the coordination of Zn2+ ion, diminishing the electron delocalization of the NDI moiety and resulting in intramolecular charge‐transfer (ICT) disturbance. For PNT, the distinct blueshift in both absorbance and fluorescence is indicative of a combination of PET and ICT processes, which unexpectedly decreases the sensitivity to Zn2+. Due to the differential binding mode caused by the ligand effect, PND shows excellent selectivity to Zn2+ over other metal ions, with a larger fluorescent enhancement centered at 650 nm. Also both PND and PNT were successfully used to image intracellular Zn2+ ions in the living KB cells.  相似文献   

16.
2‐(2‐Hydroxy‐phenyl)‐4(3H)‐quinazolinone (HPQ), an organic fluorescent material that exhibits fluorescence by the excited‐state intramolecular proton‐transfer (ESIPT) mechanism, forms two different polymorphs in tetrahydrofuran. The conformational twist between the phenyl and quinazolinone rings of HPQ leads to different molecular packing in the solid state, giving structures that show solid‐state fluorescence at 497 and 511 nm. HPQ also shows intense fluorescence in dimethyl formamide (DMF) solution and selectively detects Zn2+ and Cd2+ ions at micromolar concentrations in DMF. Importantly, HPQ not only detects Zn2+ and Cd2+ ions selectively, but it also distinguishes between the metal ions with a fluorescence λmax that is blue‐shifted from 497 to 420 and 426 nm for Zn2+ and Cd2+ ions, respectively. Hence, tunable solid‐state fluorescence and selective metal‐ion‐sensor properties were demonstrated in a single organic material.  相似文献   

17.
The aim of this report is to present the electrospray ionization mass spectrometry results of the non‐covalent interaction of two biologically active ligands, N‐1 ‐ (p‐toluenesulfonyl)cytosine, 1‐TsC, 1 and N‐1 ‐ methanesulfonylcytosine, 1‐MsC, 2 and their Cu(II) complexes Cu(1‐TsC‐N3)2Cl2, 3 and Cu(1‐MsC‐N3)2Cl2 and 4 with biologically important cations: Na+, K+, Ca2+, Mg2+ and Zn2+. The formation of various complex metal ions was observed. The alkali metals Na+ and K+ formed clusters because of electrostatic interactions. Ca2+ and Mg2+ salts produced the tris ligand and mixed ligand complexes. The interaction of Zn2+ with 1–4 produced monometal and dimetal Zn2+ complexes as a result of the affinity of Zn2+ ions toward both O and N atoms. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
New amphiphilic gelators that contained both Schiff base and L ‐glutamide moieties, abbreviated as o‐SLG and p‐SLG, were synthesized and their self‐assembly in various organic solvents in the absence and presence of metal ions was investigated. Gelation test revealed that o‐SLG formed a thermotropic gel in many organic solvents, whilst p‐SLG did not. When metal ions, such as Cu2+, Zn2+, Mg2+, Ni2+, were added, different behaviors were observed. The addition of Cu2+ induced p‐SLG to from an organogel. In the case of o‐SLG, the addition of Cu2+ and Mg2+ ions maintained the gelating ability of the compound, whilst Zn2+ and Ni2+ ions destroyed the gel. In addition, the introduction of Cu2+ ions caused the nanofiber gel to perform a chiral twist, whilst the Mg2+ ions enhanced the fluorescence of the gel. More interestingly, the Mg2+‐ion‐mediated organogel showed differences in the fluorescence quenching by D ‐ and L ‐tartaric acid, thus showing a chiral recognition ability.  相似文献   

19.
《Electroanalysis》2003,15(14):1177-1184
The metal binding properties of glutathione (GSH) and their fragments γ‐Glu‐Cys and Cys‐Gly are of biological and environmental interest. In this work a differential pulse polarographic study of the Zn2+/γ‐Glu‐Cys and Zn2+/Cys‐Gly systems was carried out for a better understanding of the results obtained in previous studies on the Zn2+‐GSH system. In the case of γ‐Glu‐Cys, complexation with Zn2+ was not detected. In the case of Cys‐Gly, the parallel analysis, by multivariate curve resolution with alternating least squares, of data from the titration of peptide with metal and of metal with peptide suggested the presence of two types of bound Zn2+. This could be attributed to Zn2+ strongly bound to two sulfur atoms of two peptides, to form a complex of 1 : 2 stoichiometry, and to Zn2+ weakly bound to carboxylate and/or amino groups.  相似文献   

20.
A method for the simultaneous preconcentration of Cu2+,Zn2+ and Fe3+ ions, in some food samples has been reported. The method is based on the adsorption of 3‐(1‐(1‐H‐indol‐3‐yl)‐3‐phenylallyl)‐1H‐indole (IPAI) loaded on Duolite XAD 761. The metal ions adsorbed on the modified solid phase resin are eluted using 6 mL of 4 mol L?1 nitric acid. The influences of the analytical parameters including pH and amount of ligand and solid phase and type and amount of surfactant and sample volume on the metal ions recoveries were investigated. The effects of matrix ions on the retentions of the analytes were also examined. The recoveries of analytes were generally higher than 95% with a RSD lower than 5%. The method has been successfully applied for these metals content evaluation in some real samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号