首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
A universal sequential synthesis strategy in aqueous solution is presented for highly uniform core–shell structured photocatalysts, which consist of a metal sulfide light absorber core and a metal sulfide co-catalyst shell. We show that the sequential chemistry can drive the formation of unique core–shell structures controlled by the constant of solubility product of metal sulfides. A variety of metal sulfide core–shell structures have been demonstrated, including CdS@CoSx, CdS@MnSx, CdS@NiSx, CdS@ZnSx, CuS@CdS, and more complexed CdS@ZnSx@CoSx. The obtained strawberry-like CdS@CoSx core–shell structures exhibit a high photocatalytic H2 production activity of 3.92 mmol h−1 and an impressive apparent quantum efficiency of 67.3 % at 420 nm, which is much better than that of pure CdS nanoballs (0.28 mmol h−1), CdS/CoSx composites (0.57 mmol h−1), and 5 %wt Pt-loaded CdS photocatalysts (1.84 mmol h−1).  相似文献   

2.
The metal sulfide‐carbon nanocomposite is a new class of anode material for sodium ion batteries, but its development is restricted by its relative poor rate ability and cyclic stability. Herein, we report the use of double‐helix structure of carrageenan–metal hydrogels for the synthesis of 3D metal sulfide (MxSy) nanostructure/carbon aerogels (CAs) for high‐performance sodium‐ion storage. The method is unique, and can be used to make multiple MxSy/CAs (such as FeS/CA, Co9S8/CA, Ni3S4/CA, CuS/CA, ZnS/CA, and CdS/CA) with ultra‐small nanoparticles and hierarchical porous structure by pyrolyzing the carrageenan–metal hydrogels. The as‐prepared FeS/CA exhibits a high reversible capacity and excellent cycling stability (280 mA h?1 at 0.5 A g?1 over 200 cycles) and rate performance (222 mA h?1 at 5 A g?1) when used as the anode material for sodium‐ion batteries. The work shows the value of biomass‐derived metal sulfide–carbon heterostuctures in sodium‐ion storage.  相似文献   

3.
4.
Photocatalytic water splitting for hydrogen production using sustainable sunlight is a promising alternative to industrial hydrogen production. However, the scarcity of highly active, recyclable, inexpensive photocatalysts impedes the development of photocatalytic hydrogen evolution reaction (HER) schemes. Herein, a metal–organic framework (MOF)‐template strategy was developed to prepare non‐noble metal co‐catalyst/solid solution heterojunction NiS/ZnxCd1?xS with superior photocatalytic HER activity. By adjusting the doping metal concentration in MOFs, the chemical compositions and band gaps of the heterojunctions can be fine‐tuned, and the light absorption capacity and photocatalytic activity were further optimized. NiS/Zn0.5Cd0.5S exhibits an optimal HER rate of 16.78 mmol g?1 h?1 and high stability and recyclability under visible‐light irradiation (λ>420 nm). Detailed characterizations and in‐depth DFT calculations reveal the relationship between the heterojunction and photocatalytic activity and confirm the importance of NiS in accelerating the water dissociation kinetics, which is a crucial factor for photocatalytic HER.  相似文献   

5.
Graphene analogues of TaS2 and TiS2 (3–4 layers), prepared by Li intercalation followed by exfoliation in water, were characterized. Nanocomposites of CdS with few‐layer TiS2 and TaS2 were employed for the visible‐light‐induced H2 evolution reaction (HER). Benzyl alcohol was used as the sacrificial electron donor, which was oxidized to benzaldehyde during the reaction. Few‐layer TiS2 is a semiconductor with a band gap of 0.7 eV, and its nanocomposite with CdS showed an activity of 1000 μmol h?1 g?1. The nanocomposite of few‐layer TaS2, in contrast, gave rise to higher activity of 2320 μmol h?1 g?1, which was attributed to the metallic nature of few‐layer TaS2. The amount of hydrogen evolved after 20 and 16 h for the CdS/TiS2 and CdS/TaS2 nanocomposites was 14833 and 28132 μmol, respectively, with turnover frequencies of 0.24 and 0.57 h?1, respectively.  相似文献   

6.
Zheng  Ming  Gao  Bing  Tang  Suwen  Zhu  Min  Tang  Liang  Wu  Minghong 《Catalysis Surveys from Asia》2022,26(3):174-182

Zinc molybdate (ZnMoO4), a layer perovskite material, has the advantages of high stability, excellent optical and charge properties. However, its high band gap and high electron–hole recombination efficiency limit its application in the photocatalytic reduction field like hydrogen production. In this study, we used CdS as a co-catalyst and successfully prepared CdS/ZnMoO4 composite photocatalysts with different loadings. The hydrogen evolution rate of CdS/ZnMoO4 reached 530.2 µmol h?1 g?1, which was approximately 11 and 100 times more than rates of pure CdS and ZnMoO4 under the same conditions, respectively. It is the presence of CdS that contributed to this improved performance, which acted as an electron acceptor to separate electrons and holes. Besides, a reasonable mechanism was provided based on photoelectrochemical characterizations. CdS loading greatly improved the hydrogen evolution performance of ZnMoO4 under visible light, providing a direction to improving the performance of perovskite based photocatalysts.

  相似文献   

7.
Photocatalytic hydrogenation of biomass‐derived organic molecules transforms solar energy into high‐energy‐density chemical bonds. Reported herein is the preparation of a thiophene‐containing covalent triazine polymer as a photocatalyst, with unique donor‐acceptor units, for the metal‐free photocatalytic hydrogenation of unsaturated organic molecules. Under visible‐light illumination, the polymeric photocatalyst enables the transformation of maleic acid into succinic acid with a production rate of about 2 mmol g?1 h?1, and furfural into furfuryl alcohol with a production rate of about 0.5 mmol g?1 h?1. Great catalyst stability and recyclability are also measured. Given the structural diversity of polymeric photocatalysts and their readily tunable optical and electronic properties, metal‐free photocatalytic hydrogenation represents a highly promising approach for solar energy conversion.  相似文献   

8.
Crystalline and porous covalent organic frameworks (COFs) and metal‐organic frameworks (MOFs) materials have attracted enormous attention in the field of photocatalytic H2 evolution due to their long‐range order structures, large surface areas, outstanding visible light absorbance, and tunable band gaps. In this work, we successfully integrated two‐dimensional (2D) COF with stable MOF. By covalently anchoring NH2‐UiO‐66 onto the surface of TpPa‐1‐COF, a new type of MOF/COF hybrid materials with high surface area, porous framework, and high crystallinity was synthesized. The resulting hierarchical porous hybrid materials show efficient photocatalytic H2 evolution under visible light irradiation. Especially, NH2‐UiO‐66/TpPa‐1‐COF (4:6) exhibits the maximum photocatalytic H2 evolution rate of 23.41 mmol g?1 h?1 (with the TOF of 402.36 h?1), which is approximately 20 times higher than that of the parent TpPa‐1‐COF and the best performance photocatalyst for H2 evolution among various MOF‐ and COF‐based photocatalysts.  相似文献   

9.
CdS quantum dots (QD) were capped with SiO2 via a microemulsion method for reducing the toxicity and imparting the biocompatibility of the CdS QD. The resulting CdS/SiO2 core/shell nanoparticles (NP) showed an improved water‐solubility and stability even in pH 4.0 acidic medium. Their fluorescence could be effectively enhanced in the presence of bovine serum albumin (BSA), due to the passivation effect of BSA on the surface of the NP. Furthermore, the concentration dependence of the fluorescence intensity obeys the Langmuir‐type binding isotherm. Thus a novel fluorescence enhancement method for the determination of BSA has been developed using the less‐toxic CdS/SiO2 core/shell NP as probes. Under optimal conditions, the linear range of calibration curve is 0.6–30 µg·mL?1, and the detection limit is 0.18 µg·mL?1. Compared with the water‐soluble CdS NP without SiO2 shell, the CdS/SiO2 core/shell NP exhibited slightly lower fluorescence response to BSA as well as other coexisting substances, such as heavy and transition metals, due to the inhibition of SiO2 shell. The proposed method was applied to the quantification of BSA in synthetic and serum samples with satisfactory results.  相似文献   

10.
The establishment of Z‐scheme charge transfer between semiconductors is an effective method to improve the performance of hybridized semiconductor photocatalysts. Herein, the novel photocatalysts consisting of MoO3‐x and varying amounts of cadmium sulfide (CdS) nanospheres were successfully prepared via the one‐pot hydrothermal method in the presence of polyvinylpyrrolidone (PVP). It is indicated that the PVP not only served as the reducing agent for the formation of oxygen defects in MoO3‐x, but also the cross‐linking agent for the coupling between MoO3‐x and CdS. The CdS/MoO3‐x composite allowed for higher visible‐light photocatalytic performance for enhanced removal of methylene blue and tetracycline with an efficiency of 97.6% and 85.5%, respectively. The improved performance of the CdS/MoO3‐x composite was found to be mainly attributable to the remarkable charge carrier separation and transfer between CdS and MoO3‐x based on the favorable hole‐transporting nature and oxygen deficiencies of MoO3‐x. In addition, the hole‐oxidized photocorrosion of CdS was efficiently suppressed due to the presence of hole‐attractive MoO3‐x. At the solid interface, an oxygen‐defects‐mediated Z‐scheme charge carrier transfer pathway was proposed as the underlying mechanism for the superior photocatalytic reaction.  相似文献   

11.
The facile electron–hole pair recombination in earth‐abundant transition‐metal oxides is a major limitation for the development of highly efficient hydrogen evolution photocatalysts. In this work, the thickness of a layered β‐CoOOH semiconductor that contains metal/hydroxy groups was reduced to obtain an atomically thin, two‐dimensional nanostructure. Analysis by ultrafast transient absorption spectroscopy revealed that electron–hole recombination is almost suppressed in the as‐prepared 1.3 nm thick β‐CoOOH nanosheet, which leads to prominent electron–hole separation efficiencies of 60–90 % upon irradiation at 350–450 nm, which are ten times higher than those of the bulk counterpart. X‐ray absorption spectroscopy and first‐principles calculations demonstrate that [HO?CoO6?x] species on the nanosheet surface promote H+ adsorption and H2 desorption. An aqueous suspension of the β‐CoOOH nanosheets exhibited a high hydrogen production rate of 160 μmol g?1 h?1 even when the system was operated for hundreds of hours.  相似文献   

12.
Hydrogen evolution reaction/Oxygen evolution reaction (HER/OER) synergy would be the most important issue for overall water splitting. The Pt-free 1T/2H-MoS2/CdS/MnOx hollow core–shell nanocomposites are fabricated via a continuous hydrothermal–chemical method; therefore, the OER co-catalysts MnOx and CdS shell are deposited on the surface of SiO2 nanosphere templates continuously via hydrothermal–chemical method. Subsequently, the SiO2 templates are etched via chemical method and the 2H-MoS2/CdS hollow core–shell heterojunction and 1T-MoS2 HER co-catalyst are introduced via one-step hydrothermal method. Evaluated by photocatalytic performance, the 1T/2H-MoS2/CdS/MnOx exhibits an enhanced HER performance of about ~50 folds than that of single CdS hollow nanosphere, and achieves a decent overall water splitting performance of about ~1668.00(H2)/824.61(O2) μmol/g?h, which can be mainly ascribed to the well HER/OER synergy and formation of hollow core–shell structure. Therefore, the 1T-MoS2 with quick electron transport and decent solid/liquid interface can promote the photogenerated electron diffusing, the MnOx with mixed Mn3+/Mn4+ ions can activate the hole-related species for OH? oxidation and promote H2O2 decomposition, the 2H–MoS2/CdS heterojunction can separate the charge carrier and meet the potential to achieve overall water splitting. Additionally, the 1T/2H-MoS2 with decent lattice matching can improve the charge carrier transport, the 1T-MoS2 with sufficient specific surface areas can increase active sites and the hollow core–shell structure can increase solar efficiency which is also beneficial for enhancing the overall water splitting performance and stability.  相似文献   

13.
Photocatalytic water splitting for hydrogen production using sustainable sunlight is a promising alternative to industrial hydrogen production. However, the scarcity of highly active, recyclable, inexpensive photocatalysts impedes the development of photocatalytic hydrogen evolution reaction (HER) schemes. Herein, a metal–organic framework (MOF)‐template strategy was developed to prepare non‐noble metal co‐catalyst/solid solution heterojunction NiS/ZnxCd1−xS with superior photocatalytic HER activity. By adjusting the doping metal concentration in MOFs, the chemical compositions and band gaps of the heterojunctions can be fine‐tuned, and the light absorption capacity and photocatalytic activity were further optimized. NiS/Zn0.5Cd0.5S exhibits an optimal HER rate of 16.78 mmol g−1 h−1 and high stability and recyclability under visible‐light irradiation (λ>420 nm). Detailed characterizations and in‐depth DFT calculations reveal the relationship between the heterojunction and photocatalytic activity and confirm the importance of NiS in accelerating the water dissociation kinetics, which is a crucial factor for photocatalytic HER.  相似文献   

14.
Yolk–shell‐structured Zn–Fe–S multicomponent sulfide materials with a 1:2 Zn/Fe molar ratio were prepared applying a sulfidation process to ZnFe2O4 yolk–shell powders. The Zn–Fe–S powders had mixed sphalerite (Zn,Fe)S and hexagonal FeS crystal structures. The discharge capacities of the Zn–Fe–S powders sulfidated at 350 °C at a constant current density of 500 mA g?1 for the first, second, and fiftieth cycles were 1098, 912, and 913 mA h g?1, respectively. The powders exhibited a high discharge capacity of 602 mA h g?1 even at the high current density of 10 A g?1. The synergistic effect of yolk–shell structure and multicomponent composition improved the electrochemical properties of Zn–Fe–S powders.  相似文献   

15.
A highly efficient Z‐scheme photocatalytic system constructed with 1D CdS and 2D CoS2 exhibited high photocatalytic hydrogen‐evolution activity of 5.54 mmol h?1 g?1 with an apparent quantum efficiency of 10.2 % at 420 nm. More importantly, its interfacial charge migration pathway was unraveled: The electrons are efficiently transferred from CdS to CoS2 through a transition atomic layer connected by Co–S5.8 coordination, thus resulting in more photogenerated carriers participating in surface reactions. Furthermore, the charge‐trapping and charge‐transfer processes were investigated by transient absorption spectroscopy, which gave an estimated charge‐separation yield of approximately 91.5 % and a charge‐separated‐state lifetime of approximately (5.2±0.5) ns in CdS/CoS2. This study elucidates the key role of interfacial atomic layers in heterojunctions and will facilitate the development of more efficient Z‐scheme photocatalytic systems.  相似文献   

16.
We report the synthesis and characterization of new NixRu1?x (x=0.56–0.74) alloy nanoparticles (NPs) and their catalytic activity for hydrogen release in the ammonia borane hydrolysis process. The alloy NPs were obtained by wet‐chemistry method using a rapid lithium triethylborohydride reduction of Ni2+ and Ru3+ precursors in oleylamine. The nature of each alloy sample was fully characterized by TEM, XRD, energy dispersive X‐ray spectroscopy (EDX), and X‐ray photoelectron spectroscopy (XPS). We found that the as‐prepared Ni–Ru alloy NPs exhibited exceptional catalytic activity for the ammonia borane hydrolysis reaction for hydrogen release. All Ni–Ru alloy NPs, and in particular the Ni0.74Ru0.26 sample, outperform the activity of similar size monometallic Ni and Ru NPs, and even of Ni@Ru core‐shell NPs. The hydrolysis activation energy for the Ni0.74Ru0.26 alloy catalyst was measured to be approximately 37 kJ mol?1. This value is considerably lower than the values measured for monometallic Ni (≈70 kJ mol?1) and Ru NPs (≈49 kJ mol?1), and for Ni@Ru (≈44 kJ mol?1), and is also lower than the values of most noble‐metal‐containing bimetallic NPs reported in the literature. Thus, a remarkable improvement of catalytic activity of Ru in the dehydrogenation of ammonia borane was obtained by alloying Ru with a Ni, which is a relatively cheap metal.  相似文献   

17.
CdS nanoparticles were deposited on a highly stable, two‐dimensional (2D) covalent organic framework (COF) matrix and the hybrid was tested for photocatalytic hydrogen production. The efficiency of CdS‐COF hybrid was investigated by varying the COF content. On the introduction of just 1 wt % of COF, a dramatic tenfold increase in the overall photocatalytic activity of the hybrid was observed. Among the various hybrids synthesized, that with 10 wt % COF, named CdS‐COF (90:10), was found to exhibit a steep H2 production amounting to 3678 μmol h?1 g?1, which is significantly higher than that of bulk CdS particles (124 μmol h?1 g?1). The presence of a π‐conjugated backbone, high surface area, and occurrence of abundant 2D hetero‐interface highlight the usage of COF as an effective support for stabilizing the generated photoelectrons, thereby resulting in an efficient and high photocatalytic activity.  相似文献   

18.
Visible‐light driven photoconversion of CO2 into energy carriers is highly important to the natural carbon balance and sustainable development. Demonstrated here is the adenine‐dependent CO2 photoreduction performance in green biomimetic metal–organic frameworks. Photocatalytic results indicate that AD‐MOF‐2 exhibited a very high HCOOH production rate of 443.2 μmol g?1 h?1 in pure aqueous solution, and is more than two times higher than that of AD‐MOF‐1 (179.0 μmol g?1h?1) in acetonitrile solution. Significantly, experimental and theoretical evidence reveal that the CO2 photoreduction reaction mainly takes place at the aromatic nitrogen atom of adenine molecules through a unique o‐amino‐assisted activation rather than at the metal center. This work not only serves as an important case study for the development of green biomimetic photocatalysts used for artificial photosynthesis, but also proposes a new catalytic strategy for efficient CO2 photoconversion.  相似文献   

19.
A simple and versatile method for general synthesis of uniform one‐dimensional (1D) MxCo3?xS4 (M=Ni, Mn, Zn) hollow tubular structures (HTSs), using soft polymeric nanofibers as a template, is described. Fibrous core–shell polymer@M‐Co acetate hydroxide precursors with a controllable molar ratio of M/Co are first prepared, followed by a sulfidation process to obtain core–shell polymer@MxCo3?xS4 composite nanofibers. The as‐made MxCo3?xS4 HTSs have a high surface area and exhibit exceptional electrochemical performance as electrode materials for hybrid supercapacitors. For example, the MnCo2S4 HTS electrode can deliver specific capacitance of 1094 F g?1 at 10 A g?1, and the cycling stability is remarkable, with only about 6 % loss over 20 000 cycles.  相似文献   

20.
A strategy to covalently connect crystalline covalent organic frameworks (COFs) with semiconductors to create stable organic–inorganic Z‐scheme heterojunctions for artificial photosynthesis is presented. A series of COF–semiconductor Z‐scheme photocatalysts combining water‐oxidation semiconductors (TiO2, Bi2WO6, and α‐Fe2O3) with CO2 reduction COFs (COF‐316/318) was synthesized and exhibited high photocatalytic CO2‐to‐CO conversion efficiencies (up to 69.67 μmol g?1 h?1), with H2O as the electron donor in the gas–solid CO2 reduction, without additional photosensitizers and sacrificial agents. This is the first report of covalently bonded COF/inorganic‐semiconductor systems utilizing the Z‐scheme applied for artificial photosynthesis. Experiments and calculations confirmed efficient semiconductor‐to‐COF electron transfer by covalent coupling, resulting in electron accumulation in the cyano/pyridine moieties of the COF for CO2 reduction and holes in the semiconductor for H2O oxidation, thus mimicking natural photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号