首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA self‐assembly allows the construction of nanometre‐scale structures and devices. Structures with thousands of unique components are routinely assembled in good yield. Experimental progress has been rapid, based largely on empirical design rules. Herein, we demonstrate a DNA origami technique designed as a model system with which to explore the mechanism of assembly. The origami fold is controlled through single‐stranded loops embedded in a double‐stranded DNA template and is programmed by a set of double‐stranded linkers that specify pairwise interactions between loop sequences. Assembly is via T‐junctions formed by hybridization of single‐stranded overhangs on the linkers with the loops. The sequence of loops on the template and the set of interaction rules embodied in the linkers can be reconfigured with ease. We show that a set of just two interaction rules can be used to assemble simple T‐junction origami motifs and that assembly can be performed at room temperature.  相似文献   

2.
DNA折纸术是近年来提出的一种全新的DNA自组装的方法,是DNA纳米技术与DNA自组装领域的一个重大进展。与传统的DNA自组装技术不同,DNA折纸术通过将一条长的DNA单链(通常为基因组DNA)与一系列经过设计的短DNA片段进行碱基互补,能够可控地构造出高度复杂的纳米图案或结构,在新兴的纳米领域中具有广泛的潜在应用。本文在介绍DNA折纸术相关原理的基础上,就DNA折纸术的起源、发展及其在DNA芯片、纳米元件与材料等领域的潜在应用进行了概述,探讨了DNA折纸术未来可能的发展方向。  相似文献   

3.
DNA self-assembly allows the construction of nanometre-scale structures and devices. Structures with thousands of unique components are routinely assembled in good yield. Experimental progress has been rapid, based largely on empirical design rules. Herein, we demonstrate a DNA origami technique designed as a model system with which to explore the mechanism of assembly. The origami fold is controlled through single-stranded loops embedded in a double-stranded DNA template and is programmed by a set of double-stranded linkers that specify pairwise interactions between loop sequences. Assembly is via T-junctions formed by hybridization of single-stranded overhangs on the linkers with the loops. The sequence of loops on the template and the set of interaction rules embodied in the linkers can be reconfigured with ease. We show that a set of just two interaction rules can be used to assemble simple T-junction origami motifs and that assembly can be performed at room temperature.  相似文献   

4.
Designer DNA architectures with nanoscale geometric controls provide a programmable molecular toolbox for engineering complex nanodevices. Scaffolded DNA origami has dramatically improved our ability to design and construct DNA nanostructures with finite size and spatial addressability. Here we report a novel design strategy to engineer multilayered wireframe DNA structures by introducing crossover pairs that connect neighboring layers of DNA double helices. These layered crossovers (LX) allow the scaffold or helper strands to travel through different layers and can control the relative orientation of DNA helices in neighboring layers. Using this design strategy, we successfully constructed four versions of two‐layer parallelogram structures with well‐defined interlayer angles, a three‐layer structure with triangular cavities, and a 9‐ and 15‐layer square lattices. This strategy provides a general route to engineer 3D framework DNA nanostructures with controlled cavities and opportunities to design host–guest networks analogs to those produced with metal organic frameworks.  相似文献   

5.
Mechanically interlocked supramolecular assemblies are appealing building blocks for creating functional nanodevices. Herein, we describe the multistep assembly of large DNA origami rotaxanes that are capable of programmable structural switching. We validated the topology and structural integrity of these rotaxanes by analyzing the intermediate and final products of various assembly routes by electrophoresis and electron microscopy. We further analyzed two structure‐switching behaviors of our rotaxanes, which are both mediated by DNA hybridization. In the first mechanism, the translational motion of the macrocycle can be triggered or halted at either terminus. In the second mechanism, the macrocycle can be elongated after completion of the rotaxane assembly, giving rise to a unique structure that is otherwise difficult to access.  相似文献   

6.
We report the design and assembly of chiral DNA nanotubes with well‐defined and addressable inside and outside surfaces. We demonstrate that the outside surface can be functionalised with a chiral arrangement of gold nanoparticles to create a plasmonic device and that the inside surface can be functionalised with a track for a molecular motor allowing transport of a cargo within the central cavity.  相似文献   

7.
Bottom‐up strategies to fabricate patterned polymers at the nanoscale represent an emerging field in the development of advanced nanodevices, such as biosensors, nanofluidics, and nanophotonics. DNA origami techniques provide access to distinct architectures of various sizes and shapes and present manifold opportunities for functionalization at the nanoscale with the highest precision. Herein, we conduct in situ atom‐transfer radical polymerization (ATRP) on DNA origami, yielding differently nanopatterned polymers of various heights. After cross‐linking, the grafted polymeric nanostructures can even stably exist in solution without the DNA origami template. This straightforward approach allows for the fabrication of patterned polymers with low nanometer resolution, which provides access to unique DNA‐based functional hybrid materials.  相似文献   

8.
The arrangement of DNA‐based nanostructures into extended higher order assemblies is an important step towards their utilization as functional molecular materials. We herein demonstrate that by electrostatically controlling the adhesion and mobility of DNA origami structures on mica surfaces by the simple addition of monovalent cations, large ordered 2D arrays of origami tiles can be generated. The lattices can be formed either by close‐packing of symmetric, non‐interacting DNA origami structures, or by utilizing blunt‐end stacking interactions between the origami units. The resulting crystalline lattices can be readily utilized as templates for the ordered arrangement of proteins.  相似文献   

9.
10.
11.
Amphiphilic compounds have a strong tendency to form aggregates in aqueous solutions. It is shown that such aggregation can be utilized to fold cholesterol‐modified, single‐layered DNA origami structures into sandwich‐like bilayer structures, which hide the cholesterol modifications in their interior. The DNA bilayer structures unfold after addition of the surfactant Tween 80, and also in the presence of lipid bilayer membranes, with opening kinetics well described by stretched exponentials. It is also demonstrated that by combination with an appropriate lock and key mechanism, hydrophobic actuation of DNA sandwiches can be made conditional on the presence of an additional molecular input such as a specific DNA sequence.  相似文献   

12.
Programmable assembly of nanoparticles (NPs) into well‐defined architectures has attracted attention because of tailored properties resulting from coupling effects. However, general and precise approaches to control binding modes between NPs remain a challenge owing to the difficulty in manipulating the accurate positions of the functional patches on the surface of NPs. Here, a strategy is developed to encage spherical NPs into pre‐designed octahedral DNA origami frames (DOFs) through DNA base‐pairings. The DOFs logically define the arrangements of functional patches in three dimensions, owing to the programmability of DNA hybridization, and thus control the binding modes of the caged nanoparticle with designed anisotropy. Applying the node‐and‐spacer approach that was widely used in crystal engineering to design coordination polymers, patchy NPs could be rationally designed with lower symmetry encoded to assemble a series of nano‐architectures with high‐order geometries.  相似文献   

13.
Aligning carbon nanotubes (CNTs) is a key challenge for fabricating CNT‐based electronic devices. Herein, we report a spherical nucleic acid (SNA) mediated approach for the highly precise alignment of CNTs at prescribed sites on DNA origami. We find that the cooperative DNA hybridization occurring at the interface of SNA and DNA‐coated CNTs leads to an approximately five‐fold improvement of the positioning efficiency. By combining this with the intrinsic positioning addressability of DNA origami, CNTs can be aligned in parallel with an extremely small angular variation of within 10°. Moreover, we demonstrate that the parallel alignment of CNTs prevents incorrect logic functionality originating from stray conducting paths formed by misaligned CNTs. This SNA‐mediated method thus holds great potential for fabricating scalable CNT arrays for nanoelectronics.  相似文献   

14.
The surface-assisted hierarchical assembly of DNA origami nanostructures is a promising route to fabricate regular nanoscale lattices. In this work, the scalability of this approach is explored and the formation of a homogeneous polycrystalline DNA origami lattice at the mica-electrolyte interface over a total surface area of 18.75 cm2 is demonstrated. The topological analysis of more than 50 individual AFM images recorded at random locations over the sample surface showed only minuscule and random variations in the quality and order of the assembled lattice. The analysis of more than 450 fluorescence microscopy images of a quantum dot-decorated DNA origami lattice further revealed a very homogeneous surface coverage over cm2 areas with only minor boundary effects at the substrate edges. At total DNA costs of € 0.12 per cm2, this large-scale nanopatterning technique holds great promise for the fabrication of functional surfaces.  相似文献   

15.
DNA origami structures have great potential as functional platforms in various biomedical applications. Many applications, however, are incompatible with the high Mg2+ concentrations commonly believed to be a prerequisite for maintaining DNA origami integrity. Herein, we investigate DNA origami stability in low‐Mg2+ buffers. DNA origami stability is found to crucially depend on the availability of residual Mg2+ ions for screening electrostatic repulsion. The presence of EDTA and phosphate ions may thus facilitate DNA origami denaturation by displacing Mg2+ ions from the DNA backbone and reducing the strength of the Mg2+–DNA interaction, respectively. Most remarkably, these buffer dependencies are affected by DNA origami superstructure. However, by rationally selecting buffer components and considering superstructure‐dependent effects, the structural integrity of a given DNA origami nanostructure can be maintained in conventional buffers even at Mg2+ concentrations in the low‐micromolar range.  相似文献   

16.
While single‐molecule sensing offers the ultimate detection limit, its throughput is often restricted as sensing events are carried out one at a time in most cases. 2D and 3D DNA origami nanostructures are used as expanded single‐molecule platforms in a new mechanochemical sensing strategy. As a proof of concept, six sensing probes are incorporated in a 7‐tile DNA origami nanoassembly, wherein binding of a target molecule to any of these probes leads to mechanochemical rearrangement of the origami nanostructure, which is monitored in real time by optical tweezers. Using these platforms, 10 pM platelet‐derived growth factor (PDGF) are detected within 10 minutes, while demonstrating multiplex sensing of the PDGF and a target DNA in the same solution. By tapping into the rapid development of versatile DNA origami nanostructures, this mechanochemical platform is anticipated to offer a long sought solution for single‐molecule sensing with improved throughput.  相似文献   

17.
A major goal of nanotechnology and bioengineering is to build artificial nanomachines capable of generating specific membrane curvatures on demand. Inspired by natural membrane‐deforming proteins, we designed DNA‐origami curls that polymerize into nanosprings and show their efficacy in vesicle deformation. DNA‐coated membrane tubules emerge from spherical vesicles when DNA‐origami polymerization or high membrane‐surface coverage occurs. Unlike many previous methods, the DNA self‐assembly‐mediated membrane tubulation eliminates the need for detergents or top‐down manipulation. The DNA‐origami design and deformation conditions have substantial influence on the tubulation efficiency and tube morphology, underscoring the intricate interplay between lipid bilayers and vesicle‐deforming DNA structures.  相似文献   

18.
DNA nanotechnology has been employed in the construction of self‐assembled nano‐biomaterials with uniform size and shape for various biological applications, such as bioimaging, diagnosis, or therapeutics. Herein, recent successful efforts to utilize multifunctional DNA origami nanoplatforms as drug‐delivery vehicles are reviewed. Diagnostic and therapeutic strategies based on gold nanorods, chemotherapeutic drugs, cytosine–phosphate–guanine, functional proteins, gene drugs, and their combinations for optoacoustic imaging, photothermal therapy, chemotherapy, immunological therapy, gene therapy, and coagulation‐based therapy are summarized. The challenges and opportunities for DNA‐based nanocarriers for biological applications are also discussed.  相似文献   

19.
DNA nanotechnology enables the synthesis of nanometer‐sized objects that can be site‐specifically functionalized with a large variety of materials. For these reasons, DNA‐based devices such as DNA origami are being considered for applications in molecular biology and nanomedicine. However, many DNA structures need a higher ionic strength than that of common cell culture buffers or bodily fluids to maintain their integrity and can be degraded quickly by nucleases. To overcome these deficiencies, we coated several different DNA origami structures with a cationic poly(ethylene glycol)–polylysine block copolymer, which electrostatically covered the DNA nanostructures to form DNA origami polyplex micelles (DOPMs). This straightforward, cost‐effective, and robust route to protect DNA‐based structures could therefore enable applications in biology and nanomedicine where unprotected DNA origami would be degraded.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号