首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A scalable metal-, azide-, and halogen-free method for the synthesis of substituted 1,2,3-triazoles has been developed. The reaction proceeds through a 3-component coupling of α-ketoacetals, tosyl hydrazide, and a primary amine. The reaction shows outstanding functional-group tolerance with respect to both the α-ketoacetal and amine coupling partners, providing access to 4-, 1,4-, 1,5-, and 1,4,5-substituted triazoles in excellent yield. This robust method results in densely functionalised 1,2,3-triazoles that remain challenging to prepare by azide–alkyne cycloaddition (AAC, CuAAC, RuAAC) methods and can be scaled in either batch or flow reactors. Methods for the chemoselective reaction of either aliphatic amines or anilines are also described, revealing some of the potential of this novel and highly versatile transformation.  相似文献   

2.
Three components coupling of alkyl bromide, sodium azide and alkyne has been achieved using a catalytic amount of copper‐exchanged phosphotungstic acid (Cu‐TPA) in the presence of triethyl amine in DMF to afford substituted triazoles in good yields with high selectivity. Interestingly, the coupling of alkyl azide with alkyne proceeds readily at room temperature to furnish 1,2,3‐triazoles in excellent yields. The catalyst can be recovered and reused for three to four subsequent runs with a minimal decrease of activity. The use of copper modified heteropolyacids makes this procedure simple, convenient and environmentally friendly.  相似文献   

3.
Whereas copper‐catalyzed azide–alkyne cycloaddition (CuAAC) between acetylated β‐D ‐glucosyl azide and alkyl or phenyl acetylenes led to the corresponding 4‐substituted 1‐glucosyl‐1,2,3‐triazoles in good yields, use of similar conditions but with 2 equiv CuI or CuBr led to the 5‐halogeno analogues (>71 %). In contrast, with 2 equiv CuCl and either propargyl acetate or phenyl acetylene, the major products (>56 %) displayed two 5,5′‐linked triazole rings resulting from homocoupling of the 1‐glucosyl‐4‐substituted 1,2,3‐triazoles. The 4‐phenyl substituted compounds (acetylated, O‐unprotected) and the acetylated 4‐acetoxymethyl derivative existed in solution as a single form (d.r.>95:5), as shown by NMR spectroscopic analysis. The two 4‐phenyl substituted structures were unambiguously identified for the first time by X‐ray diffraction analysis, as atropisomers with aR stereochemistry. This represents one of the first efficient and highly atropodiastereoselective approaches to glucose‐based bis‐triazoles as single atropisomers. The products were purified by standard silica gel chromatography. Through Sonogashira or Suzuki cross‐couplings, the 1‐glucosyl‐5‐halogeno‐1,2,3‐triazoles were efficiently converted into a library of 1,2,3‐triazoles of the 1‐glucosyl‐5‐substituted (alkynyl, aryl) type. Attempts to achieve Heck coupling to methyl acrylate failed, but a stable palladium‐associated triazole was isolated and analyzed by 1H NMR and MS. O‐Unprotected derivatives were tested as inhibitors of glycogen phosphorylase. The modest inhibition activities measured showed that 4,5‐disubstituted 1‐glucosyl‐1,2,3‐triazoles bind weakly to the enzyme. This suggests that such ligands do not fit the catalytic site or any other binding site of the enzyme.  相似文献   

4.
Functionalized 1,2,3‐triazole heterocycles have been known for a long time and hold an extraordinary potential in diverse research areas ranging from medicinal chemistry to material science. However, the scope of therapeutically important 1‐substituted 4‐acyl‐1H‐1,2,3‐triazoles is much less explored, probably due to the lack of synthetic methodologies of good scope and practicality. Here, we describe a practical and efficient one‐pot multicomponent reaction for the synthesis of α‐ketotriazoles from readily available building blocks such as methyl ketones, N,N‐dimethylformamide dimethyl acetal, and organic azides with 100 % regioselectivity. This reaction is enabled by the in situ formation of an enaminone intermediate followed by its 1,3‐dipolar cycloaddition reaction with an organic azide. We effectively utilized the developed strategy for the derivatization of various heterocycles and natural products, a protocol which is difficult or impossible to realize by other means.  相似文献   

5.
The boom in growth of 1,4‐disubstituted triazole products, in particular, since the early 2000’s, can be largely attributed to the birth of click chemistry and the discovery of the CuI‐catalyzed azide–alkyne cycloaddition (CuAAC). Yet the synthesis of relatively simple, albeit important, 1‐substituted‐1,2,3‐triazoles has been surprisingly more challenging. Reported here is a straightforward and scalable click‐inspired protocol for the synthesis of 1‐substituted‐1,2,3‐triazoles from organic azides and the bench stable acetylene surrogate ethenesulfonyl fluoride (ESF). The new transformation tolerates a wide selection of substrates and proceeds smoothly under metal‐free conditions to give the products in excellent yield. Under controlled acidic conditions, the 1‐substituted‐1,2,3‐triazole products undergo a Michael addition reaction with a second equivalent of ESF to give the unprecedented 1‐substituted triazolium sulfonyl fluoride salts.  相似文献   

6.
The aroyl‐substituted heterocyclic ketene aminals 1 or 2 reacted with p‐chlorophenyl azide ( 3a ) to give the polysubstituted 1,2,3‐triazoles 4 or 5 , as well as the fused heterocycles 6 or 7 . Compounds 1 and 2 reacted with p‐nitrophenyl azide ( 3b ) much faster, and polysubstituted 1,2,3‐triazoles 8 or 9 were obtained as sole products. © 2000 John Wiley & Sons, Inc. Heteroatom Chem 11:387–391, 2000  相似文献   

7.
A cycloaddition reaction of a range of 1,3‐diynes with sodium azide has been realized, which provided 5‐substituted‐4‐acetylene‐1H‐1,2,3‐triazoles in 75–99% yields. The chemical structures of the new compounds 3 are established by IR, NMR, Mass, and HRMS.  相似文献   

8.
1,2,3‐Triazole has become one of the most important heterocycles in contemporary medicinal chemistry. The development of the copper‐catalyzed Huisgen cycloaddition has allowed the efficient synthesis of 1‐substituted 1,2,3‐triazoles. However, only a few methods are available for the selective preparation of 2‐substituted 1,2,3‐triazole isomers. In this context, we decided to develop an efficient flow synthesis for the preparation of various 2‐aryl‐1,2,3‐triazoles. Our strategy involves a three‐step synthesis under continuous‐flow conditions that starts from the diazotization of anilines and subsequent reaction with malononitrile, followed by nucleophilic addition of amines, and finally employs a catalytic copper(II) cyclization. Potential safety hazards associated with the formation of reactive diazonium species have been addressed by inline quenching. The use of flow equipment allows reliable scale up processes with precise control of the reaction conditions. Synthesis of 2‐substituted 1,2,3‐triazoles has been achieved in good yields with excellent selectivities, thus providing a wide range of 1,2,3‐triazoles.  相似文献   

9.
1H‐1,2,3‐triazoles can be prepared in good yield by the reaction of terminal alkyne and sodium azide in the presence of cuprous chloride at a temperature higher than 70°C. The alkyne is unactivated and the reaction has to be carried out under inert gas. At room temperature, the reaction first gives a Cu(I)‐azide complex which is converted to a Cu‐alkyne complex when the temperature is raised to higher than 70°C. The reaction of Cu(I)‐alkyne complex and azide ion dissociated from or coordinated to Cu(I) then gives 1H‐1,2,3‐triazoles.  相似文献   

10.
A series of 21 2‐(4‐(hydroxyalkyl)‐1H ‐1,2,3‐triazol‐1‐yl)‐N ‐substituted propanamides (1,4‐disubstituted 1,2,3‐triazoles having amide linkage and hydroxyl group) have been synthesized from click reaction between terminal alkyne and 2‐azido‐N ‐substituted propanamide (generated in situ from reaction of 2‐bromo‐N ‐substituted propanamide and sodium azide) and characterized by FTIR, 1H NMR, 13C NMR spectroscopy, and HRMS. All the newly synthesized triazoles were tested in vitro for antimicrobial activity against four bacterial cultures – Escherichia coli , Enterobacter aerogenes , Klebsiella pneumoniae , and Staphylococcus aureus – and two fungal cultures – Candida albicans and Aspergillus niger . The synthesized 1,4‐disubstituted 1,2,3‐triazoles displayed moderate to good antimicrobial potential against the tested strains.  相似文献   

11.
Tao He  Min Wang  Pinhua Li  Lei Wang 《中国化学》2012,30(4):979-984
A highly efficient method for the synthesis of unsymmetrical multi‐substituted 1,2,3‐triazoles via a direct Pd‐NHC system catalyzed C(5)‐arylation of 1,4‐disubstituted triazoles, which are readily accessible via "click" chemistry has been developed. It is important to note that C? H bond functionalizations of 1,2,3‐triazoles with a variety of differently substituted aryl iodides and bromides as electrophiles can be conveniently achieved through this catalytic system at significantly milder reaction temperatures of 100°C under air.  相似文献   

12.
Thermal rearrangement of 3‐acylisoxazole arylhydrazones allowed facile preparation of 2H‐1,2,3‐triazoles which were firstly reacted with isoamyl nitrite and then with an opportune arylhydrazine to produce the corresponding α‐hydroxyiminohydrazones 8a‐h . The reaction of compounds 8a‐h with phosphorus pentachloride afforded the desired 4,4′‐bitriazoles 1a‐h . The α‐hydroxyiminoketone derivative 7 or the α‐diketone 14 reacted easily with 1,2‐phenylenediamine to afford 1,2,3‐triazoles 2a‐c bearing the quinoxaline moiety at position 4. Improved yields of the quinoxalines 2a‐c were obtained when 1,2‐phenylenediamine was reacted with the dioxime 15.  相似文献   

13.
An efficient one‐pot synthesis of 1,2,3‐triazoles via the three‐component coupling reaction between propargyl bromide, secondary amines, and 3‐azidopyridine in the presence of CuI as catalyst has been presented. The reaction is highly regioselective and afforded novel 1,4‐disubstituted‐1,2,3‐triazoles in excellent yields by the [3 + 2] Huisgen cycloaddition reaction. This method avoids isolation and handling of terminal acetylenes. The ease of purification has made this methodology clean and safe for the synthesis of 1,2,3‐triazoles with a broad scope.  相似文献   

14.
The reaction of heteroaroyl‐substituted heterocyclic ketene aminals with 2,3,4,6‐tetra‐O‐acetyl‐β‐D ‐glucopyranosyl azide was investigated and a series of potential bioactive compounds, 1‐glucopyranosyl‐4‐heterocyclic‐5‐heteroaryl‐1,2,3‐triazoles, were obtained in good yields. Both the reaction rate and the yield were strongly affected by the heteroaryl and heterocyclic groups. In order to improve their water solubility, the deprotection of 1‐glucopyranosyl‐4‐heterocyclic‐5‐heteroaryl‐1,2,3‐triazole was carried out. © 2002 Wiley Periodicals, Inc. Heteroatom Chem 13:242–247, 2002; Published online in Wiley Interscience (www.interscience.wiley.com). DOI 10.1002/hc.10023  相似文献   

15.
An efficient, one‐pot, three‐step, regioselective synthesis of 4‐substituted 1‐(2‐phenylselenocyclohexyl)‐1,2,3‐triazoles, involving in situ generation of l‐azido‐2‐phenylselenocyclohexane has been developed via four‐component reaction of phenylselenenyl bromide, cyclohexene, sodium azide and terminal alkynes catalyzed by copper iodide in a mixture of DMF/THF (1:1) at room temperature under mild conditions with simple workup and good yields.  相似文献   

16.
Fully substituted triazoles were synthesized via the four-component coupling reaction of unactivated silylacetylenes, two equivalents of allyl carbonates, and trimethylsilyl azide in the presence of a Pd(0)-Cu(I) bimetallic catalyst. Various trisubstituted 1,2,3-triazoles were obtained in good yields. The reaction most probably proceeds through the [3+2] cycloaddition reaction between the alkynylcopper species and azide followed by the cross-coupling reaction between the vinylcopper intermediate and π-allylpalladium complex.  相似文献   

17.
A 4‐substituted‐1‐tosyl‐1,2,3‐triazole‐based stereoselective synthesis of structurally diverse oxaspirocycles is reported. The synthesis involves Rh‐catalyzed loss of nitrogen from 4‐substituted‐1‐tosyl‐1,2,3‐triazoles, Grignard reaction, and a ring‐closing metathesis reaction as key steps. By employing readily available and stable 4‐substituted‐1‐tosyl‐1,2,3‐triazoles as surrogates of diazo compounds and nitrogen sources, two types of oxaspirocycles were obtained. The latter compounds, which contain adjacent nitrogen stereocenters, could serve as the core structures of many natural products. This chemistry has been successfully applied to the total syntheses of (±)‐tuberostemospiroline and (±)‐stemona‐lactam R.  相似文献   

18.
《中国化学》2017,35(12):1797-1807
1,2,3‐Triazoles, as one of the most significant nitrogen‐containing heterocycles due to their extensive use in biology, material science and organic synthesis, have aroused great interest. 1,2,3‐Triazoles are commonly synthesized by metal‐catalyzed azide–alkyne cycloaddition and organocatalytic azide–carbonyl cycloaddition, which indispensably employ the toxic and potentially explosive azides. The azide‐free synthetic approaches provide a powerful and straightforward alternative to the assembly of diverse 1,2,3‐triazoles without the use of azides. In this review, we summarize the recent development of the construction of 1,2,3‐triazoles under azide‐free conditions.  相似文献   

19.
A general and efficient one‐pot aminoethylation of substituted indoles/pyrroles was accomplished for the synthesis of various tryptamine derivatives employing a combination of alkynes and sulfonyl azides as readily accessible aminoethylating agents. The reaction features a successful integration of copper‐catalyzed alkyne and azide cycloaddition to N‐sulfonyl‐1,2,3‐triazole, rhodium‐catalyzed selective insertion of α‐iminocarbenes onto the C3?H bond of indoles, and reduction of the resultant enamides to tryptamine derivatives employing either NaCNBH3 or palladium catalyst, in one‐pot. The reaction also showed excellent functional‐group tolerance and allowed the synthesis of various substituted tryptamines in good to excellent yield. This transformation constitutes a one‐pot formal regioselective functionalization of terminal alkynes. Utility of the synthesized tryptamine was further demonstrated in the synthesis of dihydro‐β‐carboline and tryptoline.  相似文献   

20.
An efficient protocol for the synthesis of substituted 1,2,3‐triazol‐9H‐purines via copper (I)‐catalyzed click chemistry of 2,6‐dichloropurine with aromatic azide has been reported. A wide range of 1,4‐disubstituted triazoles ( N‐9 substituted purines) was accessible in good‐to‐excellent yields with remarkable functional group tolerance. The base‐catalyst ratio was tuned to achieve optimum reaction condition (>95% conversion and purity in most cases). Furthermore, the structure of 4i has been unambiguously assigned by X‐ray crystallographic study to yield structural information on the 1,3‐dipoles entering the reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号