首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ductility is a common phenomenon in many metals but is difficult to achieve in molecular crystals. Organic crystals bend plastically on one or two face-specific directions but fracture when stressed in any other arbitrary directions. An exceptional metal-like ductility and malleability in the isomorphous crystals of two globular molecules, BH3NMe3 and BF3NMe3, is reported, with characteristic tensile stretching, compression, twisting, and thinning. The mechanically deformed samples, which transition to lower symmetry phases, retain good long-range order amenable to structure determination by single-crystal X-ray diffraction. Molecules in these high-symmetry crystals interact through electrostatic forces (B−N+) to form columnar structures with multiple slip planes and weak dispersive forces between columns. On the other hand, the limited number of facile slip planes and strong dihydrogen bonding in BH3NHMe2 negates ductility. Our study has implications for the design of soft ferroelectrics, solid electrolytes, barocalorics, and soft robotics.  相似文献   

2.
方奇 《结构化学》1996,15(1):74-79
描述了HEK-DDQ,[Co(C_5H_5)_2][Ni(dmit)_2],BBBT-DTT三个晶体结构中的π…π;S…S;Br…Br分子间相互作用,讨论了分子晶体中的分子间相互作用的材料化学意义。  相似文献   

3.
IR and vibrational circular dichroism (VCD) spectra of a chiral amine–borane in solution are investigated. By comparison of experimental and calculated spectra, unique VCD spectral signatures, which can be attributed to the formation of dihydrogen‐bonded dimers in solution, are identified for the first time. These VCD features are highly sensitive to the specific dihydrogen‐bonding topologies utilized by the chiral amine–borane subunits and thus provide direct structural information of these dihydrogen‐bonded species in solution. Differences in the dihydrogen binding arrangements in solution and in solid state are also revealed.  相似文献   

4.
5.
6.
We use density functional theory, newly parameterized molecular dynamics simulations, and last generation 15N dynamic nuclear polarization surface enhanced solid‐state NMR spectroscopy (DNP SENS) to understand graft–host interactions and effects imposed by the metal–organic framework (MOF) host on peptide conformations in a peptide‐functionalized MOF. Focusing on two grafts typified by MIL‐68‐proline ( ‐Pro ) and MIL‐68‐glycine‐proline ( ‐Gly‐Pro ), we identified the most likely peptide conformations adopted in the functionalized hybrid frameworks. We found that hydrogen bond interactions between the graft and the surface hydroxyl groups of the MOF are essential in determining the peptides conformation(s). DNP SENS methodology shows unprecedented signal enhancements when applied to these peptide‐functionalized MOFs. The calculated chemical shifts of selected MIL‐68‐NH‐ Pro and MIL‐68‐NH‐ Gly‐Pro conformations are in a good agreement with the experimentally obtained 15N NMR signals. The study shows that the conformations of peptides when grafted in a MOF host are unlikely to be freely distributed, and conformational selection is directed by strong host–guest interactions.  相似文献   

7.
Elucidating the rate and geometry of molecular dynamics is particularly important for unravelling ion‐conduction mechanisms in electrochemical materials. The local molecular motions in the plastic crystal 1‐ethyl‐1‐methylpyrrolidinium tetrafluoroborate ([C2mpyr][BF4]) are studied by a combination of quantum chemical calculations and advanced solid‐state nuclear magnetic resonance spectroscopy. For the first time, a restricted puckering motion with a small fluctuation angle of 25° in the pyrrolidinium ring has been observed, even in the low‐temperature phase (?45 °C). This local molecular motion is deemed to be particularly important for the material to maintain its plasticity, and hence, its ion mobility at low temperatures.  相似文献   

8.
Four new ternary crystalline molecular complexes have been synthesised from a common 3,5‐dinitrobenzoic acid (3,5‐dnda) and 4,4′‐bipyridine (bipy) pairing with a series of amino‐substituted aromatic compounds (4‐aminobenzoic acid (4‐aba), 4‐(N,N‐dimethylamino)benzoic acid (4‐dmaba), 4‐aminosalicylic acid (4‐asa) and sulfanilamide (saa)). The ternary crystals were created through the application of complementary charge transfer and hydrogen‐bonding interactions. For these systems a dimer was created through a charge‐transfer interaction between two of the components, while hydrogen bonding between the third molecule and this dimer completed the construction of the ternary co‐crystal. All resulting structures display the same acid ??? pyridine interaction between 3,5‐dnba and bipy. However, changing the third component causes the proton of this bond to shift from neutral OH ??? N to a salt form, O? ??? HN+, as the nature of the group hydrogen bonding to the carboxylic acid was changed. This highlights the role of the crystal environment on the level of proton transfer and the utility of ternary systems for the study of this process.  相似文献   

9.
10.
11.
The dynamics of the excited states of 3‐ and 4‐aminofluoren‐9‐ones (3AF and 4AF, respectively) are investigated in different kinds of solvents by using a subpicosecond time‐resolved absorption spectroscopic technique. They undergo hydrogen‐bonding interaction with protic solvents in both the ground and excited states. However, this interaction is more significant in the lowest excited singlet (S1) state because of its substantial intramolecular charge‐transfer character. Significant differences in the spectroscopic characteristics and temporal dynamics of the S1 states of 3AF and 4AF in aprotic and protic solvents reveal that the intermolecular hydrogen‐bonding interaction between the S1 state and protic solvents plays an important role in its relaxation process. Perfect linear correlation between the relaxation times of the S1 state and the longitudinal relaxation times (τL) of alcoholic solvents confirms the prediction regarding the solvation process via hydrogen‐bond reorganization. In the case of weakly interacting systems, the relaxation process can be well described by a dipolar solvation‐like process involving rotation of the OH groups of the alcoholic solvents, whereas in solvents having a strong hydrogen‐bond‐donating ability, for example, methanol and trifluoroethanol, it involves the conversion of the non‐hydrogen‐bonded form to the hydrogen‐bonded complex of the S1 state. Efficient radiationless deactivation of the S1 state of the aminofluorenones by protic solvents is successfully explained by the energy‐gap law, by using the energy of the fully solvated S1 state determined from the time‐resolved spectroscopic data.  相似文献   

12.
1,3,4,6‐Tetraketones typically undergo keto–enol tautomerism forming bis‐enols stabilized by intramolecular hydrogen bonding in two six‐membered rings. However, 1,3,4,6‐tetraketones derived from the terpene ketone camphor and norcamphor exist as isomers with two distinguishable modes of intramolecular hydrogen bonding, namely, the formation of six‐ or seven‐membered rings. The structural requirements for this so far unknown behavior were investigated in detail by synthesis and comparison of structural analogues. Both isomers of such 1,3,4,6‐tetraketones were fully characterized in solution and in the solid state. Intriguingly, they slowly interconvert in solution by means of tautomerism–rotation cascades, as was corroborated by DFT calculations. The influence of temperature and complexation with the transition metals Pd, Rh, and Ir on the interconversion process was investigated.  相似文献   

13.
The sensitivity of conventional thin‐film OFET‐based sensors is limited by the diffusion of analytes through bulk films and remains the central challenge in sensing technology. Now, for the first time, an ultrasensitive (sub‐ppb level) sensor is reported that exploits n‐type monolayer molecular crystals (MMCs) with porous two‐dimensional structures. Thanks to monolayer crystal structure of NDI3HU‐DTYM2 (NDI) and controlled formation of porous structure, a world‐record detection limit of NH3 (0.1 ppb) was achieved. Moreover, the MMC‐OFETs also enabled direct detection of solid analytes of biological amine derivatives, such as dopamine at an extremely low concentration of 500 ppb. The remarkably improved sensing performances of MMC‐OFETs opens up the possibility of engineering OFETs for ultrasensitive (bio)chemical sensing.  相似文献   

14.
Elastic metal–organic materials (MOMs) capable of multiple stimuli‐responsiveness based on dual‐stress and thermally responsive triple‐helix coordination polymers are presented. The strong metal‐coordination linkage and the flexibility of organic linkers in these MOMs, rather than the 4 Å stacking interactions observed in organic crystals, causes the helical chain to act like a molecular spring and thus accounts for their macroscopic elasticity. The thermosalient effect of elastic MOMs is reported for the first time. Crystal structure analyses at different temperatures reveal that this thermoresponsiveness is achieved by adaptive regulation of the triple‐helix chains by fine‐tuning the opening angle of flexible V‐shaped organic linkers and rotation of its lateral conjugated groups to resist possible expansion, thus demonstrating the vital role of adaptive reorganization of triple‐helix metal–organic chains as a molecular spring‐like motif in crystal jumping.  相似文献   

15.
Charge‐shift bonds (CSBs) constitute a new class of bonds different than covalent/polar‐covalent and ionic bonds. Bonding in CSBs does not arise from either the covalent or the ionic structures of the bond, but rather from the resonance interaction between the structures. This Essay describes the reasons why the CSB family was overlooked by valence‐bond pioneers and then demonstrates that the unique status of CSBs is not theory‐dependent. Thus, valence bond (VB), molecular orbital (MO), and energy decomposition analysis (EDA), as well as a variety of electron density theories all show the distinction of CSBs vis‐à‐vis covalent and ionic bonds. Furthermore, the covalent–ionic resonance energy can be quantified from experiment, and hence has the same essential status as resonance energies of organic molecules, e.g., benzene. The Essay ends by arguing that CSBs are a distinct family of bonding, with a potential to bring about a Renaissance in the mental map of the chemical bond, and to contribute to productive chemical diversity.  相似文献   

16.
薛春瑜  仲崇立 《中国化学》2009,27(3):472-478
本工作将MM3力场进行了扩展,使其可用于描述其它IRMOF材料的柔韧性;在此基础上,我们采用分子动力学模拟研究了柔性IRMOF-1和-16材料中已烷的扩散。 本文重点研究了温度和分子数对己烷自扩散系数、扩散机理,以及骨架柔性的影响。结果表明,分子数是影响扩散路径的重要因素。其次,IRMOF-16的柔性强于IRMOF-1。 工作的结论有助于进一步研究链状分子在柔性MOF材料中的扩散。  相似文献   

17.
18.
This paper reports on the synthesis and self‐organizing properties of monodendrons consisting of L ‐alanine at the focal point and alkyl chains with different length at the periphery. The structures of thin films and monolayers are studied by temperature‐resolved grazing‐incidence X‐ray diffraction and scanning force microscopy. The interplay between H‐bonding and ordering of the alkyl chains results in a rich temperature‐dependent phase behavior. The monodendrons form H‐bonded stabilized clusters with the number of molecules depending on the length of the aliphatic chains and temperature. The clusters play the role of constitutive units in the subsequent self‐assembly. Short alkyl chains allow the material to form thermodynamically stable crystalline phases. The molecules with longer side groups exhibit additional transitions from the crystalline phase to thermotropic columnar hexagonal or columnar rectangular liquid‐crystalline phases. In monolayers deposited on highly ordered pyrolytic graphite, the materials show ordering similar to thin films. However, for the compound bearing hexadecyl chains the affinity of the alkyl groups to graphite dominates the self‐assembly and thereby allows epitaxial growth of a 2D lattice with flat‐on oriented molecules.  相似文献   

19.
20.
《化学:亚洲杂志》2017,12(23):2985-2990
Color tuning of organic solid‐state luminescent materials remains difficult and time‐consuming through conventional chemical synthesis. Herein, we reported highly efficient polymorph‐dependent green (P1), yellow (P2), and red (P3) emissions of organic crystals made by the same molecular building blocks of 4‐(2‐{4‐[2‐(4‐diphenylamino‐phenyl)‐vinyl]‐phenyl}‐vinyl)‐benzonitrile (DOPVB). Single‐crystal X‐ray diffraction (XRD) and spectroscopic data reveal that all three polymorphs follow the herringbone packing motif in H‐type aggregations. On the one hand, from P1, P2 to P3, the reduced pitch translation along π stacks increases the intermolecular interactions between adjacent molecules, therefore leading to gradually red‐shifted emissions from 540, 570 to 614 nm. On the other hand, the edge‐to‐face arrangement and large roll translations avoid strong π–π overlap, making P1, P2 and P3 highly emissive with record‐high solid‐state fluorescence quantum yields of 0.60, 0.98, and 0.68, respectively. Furthermore, the optically allowed 0–1 transitions of herringbone H‐aggregates of P1, P2 and P3 naturally provide a four‐level scheme, enabling green and yellow amplified spontaneous emissions (ASE) with very low thresholds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号