首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Even though transition-metal phosphides (TMPs) have been developed as promising alternatives to Pt catalyst for the hydrogen evolution reaction (HER), further improvement of their performance requires fine regulation of the TMP sites related to their specific electronic structure. Herein, for the first time, boron (B)-modulated electrocatalytic characteristics in CoP anchored on the carbon nanotubes (B-CoP/CNT) with impressive HER activities over a wide pH range are reported. The HER performance surpasses commercial Pt/C in both neutral and alkaline media at large current density (>100 mA cm−2). A combined experimental and theoretical study identified that the B dopant could reform the local electronic configuration and atomic arrangement of bonded Co and adjacent P atoms, enhance the electrons’ delocalization capacity of Co atoms for high electrical conductivity, and optimize the free energy of H adsorption and H2 desorption on the active sites for better HER kinetics.  相似文献   

2.
Although electrocatalysts based on transition metal phosphides (TMPs) with cationic/anionic doping have been widely studied for hydrogen evolution reaction (HER), the origin of performance enhancement still remains elusive mainly due to the random dispersion of dopants. Herein, we report a controllable partial phosphorization strategy to generate CoP species within the Co‐based metal‐organic framework (Co‐MOF). Density functional theory calculations and experimental results reveal that the electron transfer from CoP to Co‐MOF through N‐P/N‐Co bonds could lead to the optimized adsorption energy of H2O (ΔG ) and hydrogen (ΔGH*), which, together with the unique porous structure of Co‐MOF, contributes to the remarkable HER performance with an overpotential of 49 mV at a current density of 10 mA cm?2 in 1 m phosphate buffer solution (PBS, pH 7.0). The excellent catalytic performance exceeds almost all the documented TMP‐based and non‐noble‐metal‐based electrocatalysts. In addition, the CoP/Co‐MOF hybrid also displays Pt‐like performance in 0.5 m H2SO4 and 1 m KOH, with the overpotentials of 27 and 34 mV, respectively, at a current density of 10 mA cm?2.  相似文献   

3.
Designing cost‐effective and efficient electrocatalysts plays a pivotal role in advancing the development of electrochemical water splitting for hydrogen generation. Herein, multifunctional active‐center‐transferable heterostructured electrocatalysts, platinum/lithium cobalt oxide (Pt/LiCoO2) composites with Pt nanoparticles (Pt NPs) anchored on LiCoO2 nanosheets, are designed towards highly efficient water splitting. In this electrocatalyst system, the active center can be alternatively switched between Pt species and LiCoO2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Specifically, Pt species are the active centers and LiCoO2 acts as the co‐catalyst for HER, whereas the active center transfers to LiCoO2 and Pt turns into the co‐catalyst for OER. The unique architecture of Pt/LiCoO2 heterostructure provides abundant interfaces with favorable electronic structure and coordination environment towards optimal adsorption behavior of reaction intermediates. The 30 % Pt/LiCoO2 heterostructured electrocatalyst delivers low overpotentials of 61 and 285 mV to achieve 10 mA cm?2 for HER and OER in alkaline medium, respectively.  相似文献   

4.
We report a novel modulation strategy by introducing transition metals into NiS2 nanosheets (NSs) to flexibly optimize the electronic configurations and atomic arrangement. The Co‐NiS2 NSs exhibit excellent hydrogen evolution reaction (HER) performance with an overpotential of 80 mV at j=10 mA cm?2 and long‐term stability of 90 h in alkaline media. The turnover frequencies (TOFs) of 0.55 and 4.1 s?1 at an overpotential of 100 and 200 mV also confirm their remarkable performance. DFT calculations reveal that the surface dopants abnormally sensitize surface Ni‐3d bands in the long‐range order towards higher electron‐transfer activity, acting as the electron‐depletion center. Meanwhile, the high lying surface S‐sites possess substantially high selectivity for splitting the adsorbing H2O that guarantee the high HER performance within alkaline conditions. This work opens opportunities for enhancing water splitting by atomic‐arrangement‐assisted electronic modulation via a facile doping strategy.  相似文献   

5.
Both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) are crucial to water splitting, but require alternative active sites. Now, a general π‐electron‐assisted strategy to anchor single‐atom sites (M=Ir, Pt, Ru, Pd, Fe, Ni) on a heterogeneous support is reported. The M atoms can simultaneously anchor on two distinct domains of the hybrid support, four‐fold N/C atoms (M@NC), and centers of Co octahedra (M@Co), which are expected to serve as bifunctional electrocatalysts towards the HER and the OER. The Ir catalyst exhibits the best water‐splitting performance, showing a low applied potential of 1.603 V to achieve 10 mA cm?2 in 1.0 m KOH solution with cycling over 5 h. DFT calculations indicate that the Ir@Co (Ir) sites can accelerate the OER, while the Ir@NC3 sites are responsible for the enhanced HER, clarifying the unprecedented performance of this bifunctional catalyst towards full water splitting.  相似文献   

6.
Both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) are crucial to water splitting, but require alternative active sites. Now, a general π‐electron‐assisted strategy to anchor single‐atom sites (M=Ir, Pt, Ru, Pd, Fe, Ni) on a heterogeneous support is reported. The M atoms can simultaneously anchor on two distinct domains of the hybrid support, four‐fold N/C atoms (M@NC), and centers of Co octahedra (M@Co), which are expected to serve as bifunctional electrocatalysts towards the HER and the OER. The Ir catalyst exhibits the best water‐splitting performance, showing a low applied potential of 1.603 V to achieve 10 mA cm?2 in 1.0 m KOH solution with cycling over 5 h. DFT calculations indicate that the Ir@Co (Ir) sites can accelerate the OER, while the Ir@NC3 sites are responsible for the enhanced HER, clarifying the unprecedented performance of this bifunctional catalyst towards full water splitting.  相似文献   

7.
One of the challenges to realize large‐scale water splitting is the lack of active and low‐cost electrocatalysts for its two half reactions: H2 and O2 evolution reactions (HER and OER). Herein, we report that cobalt‐phosphorous‐derived films (Co‐P) can act as bifunctional catalysts for overall water splitting. The as‐prepared Co‐P films exhibited remarkable catalytic performance for both HER and OER in alkaline media, with a current density of 10 mA cm?2 at overpotentials of ?94 mV for HER and 345 mV for OER and Tafel slopes of 42 and 47 mV/dec, respectively. They can be employed as catalysts on both anode and cathode for overall water splitting with 100 % Faradaic efficiency, rivalling the integrated performance of Pt and IrO2. The major composition of the as‐prepared and post‐HER films are metallic cobalt and cobalt phosphide, which partially evolved to cobalt oxide during OER.  相似文献   

8.
《中国化学快报》2022,33(8):3752-3756
Hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) have been considered as two critical processes in the field of electrocatalytic water-splitting for hydrogen production and fuel cells. However, the sluggish reaction kinetics of HER and ORR required efficient electrocatalyst such as Pt to promote such process. Transition metal phosphides (TMPs) exhibit great potential to replace noble metal electrocatalysts to accelerate HER and ORR due to their high activity and easy availability. Herein, a highly-efficient bifunctional CoP electrocatalyst for HER and ORR, featuring a unique core-shell structure decorated on nitrogen-doped carbon matrix was designed and constructed via etching a cobalt-based zeolitic imidazolate framework (ZIF-67) with phytic acid (PA) followed by pyrolysis treatment (PA-ZIF-67–900). Experimental results revealed that the pure-phase single-crystalline CoP exhibited outstanding electrocatalytic performance in HER and ORR, superior to Co(PO3)2 in PA-ZIF-67–700, hybrid phase of Co(PO3)2 and CoP in PA-ZIF-67–800 and Co2P-doped CoP in PA-ZIF-67–1000. To reach the current density of 10 mA/cm2 the as-synthesized CoP required an overpotential of 120 mV for HER in 1 mol/L KOH and half-wave potential of 0.85 V in O2-saturated 0.1 mol/L KOH. This work present new clue for construction of efficient and bifunctional electrocatalyst in the field of energy conversion and storage  相似文献   

9.
The essence of developing a Pt‐based single‐atom catalyst (SAC) for hydrogen evolution reaction (HER) is the preparation of well‐defined and stable single Pt sites with desired electrocatalytic efficacy. Herein, we report a facile approach to generate uniformly dispersed Pt sites with outstanding HER performance via a photochemical reduction method using polyvinylpyrrolidone (PVP) molecules as the key additive to significantly simplify the synthesis and enhance the catalytic performance. The as‐prepared catalyst displays remarkable kinetic activities (20 times higher current density than the commercially available Pt/C) with excellent stability (76.3 % of its initial activity after 5000 cycles) for HER. EXAFS measurements and DFT calculations demonstrate a synergetic effect, where the PVP ligands and the support together modulate the electronic structure of the Pt atoms, which optimize the hydrogen adsorption energy, resulting in a considerably improved HER activity.  相似文献   

10.
Two Pt single‐atom catalysts (SACs) of Pt‐GDY1 and Pt‐GDY2 were prepared on graphdiyne (GDY)supports. The isolated Pt atoms are dispersed on GDY through the coordination interactions between Pt atoms and alkynyl C atoms in GDY, with the formation of five‐coordinated C1‐Pt‐Cl4 species in Pt‐GDY1 and four‐coordinated C2‐Pt‐Cl2 species in Pt‐GDY2. Pt‐GDY2 shows exceptionally high catalytic activity for the hydrogen evolution reaction (HER), with a mass activity up to 3.3 and 26.9 times more active than Pt‐GDY1 and the state‐of‐the‐art commercial Pt/C catalysts, respectively. Pt‐GDY2 possesses higher total unoccupied density of states of Pt 5d orbital and close to zero value of Gibbs free energy of the hydrogen adsorption (|Δ |) at the Pt active sites, which are responsible for its excellent catalytic performance. This work can help better understand the structure–catalytic activity relationship in Pt SACs.  相似文献   

11.
Highly active, stable, and cheap Pt‐free catalysts for the hydrogen evolution reaction (HER) are under increasing demand for future energy conversion systems. However, developing HER electrocatalysts with Pt‐like activity that can function at all pH values still remains as a great challenge. Herein, based on our theoretical predictions, we design and synthesize a novel N,P dual‐doped carbon‐encapsulated ruthenium diphosphide (RuP2@NPC) nanoparticle electrocatalyst for HER. Electrochemical tests reveal that, compared with the Pt/C catalyst, RuP2@NPC not only has Pt‐like HER activity with small overpotentials at 10 mA cm−2 (38 mV in 0.5 m H2SO4, 57 mV in 1.0 m PBS and 52 mV in 1.0 m KOH), but demonstrates superior stability at all pH values, as well as 100 % Faradaic yields. Therefore, this work adds to the growing family of transition‐metal phosphides/heteroatom‐doped carbon heterostructures with advanced performance in HER.  相似文献   

12.
Nanoparticles of cobalt phosphide, CoP, have been prepared and evaluated as electrocatalysts for the hydrogen evolution reaction (HER) under strongly acidic conditions (0.50 M H2SO4, pH 0.3). Uniform, multi‐faceted CoP nanoparticles were synthesized by reacting Co nanoparticles with trioctylphosphine. Electrodes comprised of CoP nanoparticles on a Ti support (2 mg cm?2 mass loading) produced a cathodic current density of 20 mA cm?2 at an overpotential of ?85 mV. The CoP/Ti electrodes were stable over 24 h of sustained hydrogen production in 0.50 M H2SO4. The activity was essentially unchanged after 400 cyclic voltammetric sweeps, suggesting long‐term viability under operating conditions. CoP is therefore amongst the most active, acid‐stable, earth‐abundant HER electrocatalysts reported to date.  相似文献   

13.
The development of effective and inexpensive hydrogen evolution reaction (HER) electrocatalysts for future renewable energy systems is highly desired. The strongly acidic conditions in proton exchange membranes create a need for acid‐stable HER catalysts. A nanohybrid that consists of carbon nanotubes decorated with CoP nanocrystals (CoP/CNT) was prepared by the low‐temperature phosphidation of a Co3O4/CNT precursor. As a novel non‐noble‐metal HER catalyst operating in acidic electrolytes, the nanohybrid exhibits an onset overpotential of as low as 40 mV, a Tafel slope of 54 mV dec?1, an exchange current density of 0.13 mA cm?2, and a Faradaic efficiency of nearly 100 %. This catalyst maintains its catalytic activity for at least 18 hours and only requires overpotentials of 70 and 122 mV to attain current densities of 2 and 10 mA cm?2, respectively.  相似文献   

14.
Herein, we demonstrate an easy way to improve the hydrogen evolution reaction (HER) activity of Pt electrodes in alkaline media by introducing Ni–Fe clusters. As a result, the overpotential needed to achieve a current density of 10 mA cm?2 in H2‐saturated 0.1 m KOH is reduced for the model single‐crystal electrodes down to about 70 mV. To our knowledge, these modified electrodes outperform any other reported electrocatalysts tested under similar conditions. Moreover, the influence of 1) Ni to Fe ratio, 2) cluster coverage, and 3) the nature of the alkali‐metal cations present in the electrolyte on the HER activity has been investigated. The observed catalytic performance likely originates from both the improved water dissociation at the Ni–Fe clusters and the subsequent optimal hydrogen adsorption and recombination at Pt atoms present at the Ni–Fe/Pt boundary.  相似文献   

15.
The electrochemical nitrogen reduction reaction (NRR) offers a sustainable solution towards ammonia production but suffers poor reaction performance owing to preferential catalyst–H formation and the consequential hydrogen evolution reaction (HER). Now, the Pt/Au electrocatalyst d‐band structure is electronically modified using zeolitic imidazole framework (ZIF) to achieve a Faradaic efficiency (FE) of >44 % with high ammonia yield rate of >161 μg mgcat?1 h?1 under ambient conditions. The strategy lowers electrocatalyst d‐band position to weaken H adsorption and concurrently creates electron‐deficient sites to kinetically drive NRR by promoting catalyst–N2 interaction. The ZIF coating on the electrocatalyst doubles as a hydrophobic layer to suppress HER, further improving FE by >44‐fold compared to without ZIF (ca. 1 %). The Pt/Au‐NZIF interaction is key to enable strong N2 adsorption over H atom.  相似文献   

16.
Maximizing the platinum utilization in electrocatalysts toward oxygen reduction reaction (ORR) is very desirable for large‐scale sustainable application of Pt in energy systems. A cost‐effective carbon‐supported carbon‐defect‐anchored platinum single‐atom electrocatalysts (Pt1/C) with remarkable ORR performance is reported. An acidic H2/O2 single cell with Pt1/C as cathode delivers a maximum power density of 520 mW cm?2 at 80 °C, corresponding to a superhigh platinum utilization of 0.09 gPt kW?1. Further physical characterization and density functional theory computations reveal that single Pt atoms anchored stably by four carbon atoms in carbon divacancies (Pt‐C4) are the main active centers for the observed high ORR performance.  相似文献   

17.
Perturbing the electronic structure of the MoS2 basal plane by confining heteroatoms offers the opportunity to trigger in‐plane activity for the hydrogen evolution reaction (HER). The key challenge consists of inducing the optimum HER activity by controlling the type and distribution of confined atoms. A distance synergy of MoS2‐confined single‐atom rhodium is presented, leading to an ultra‐high HER activity at the in‐plane S sites adjacent to the rhodium. By optimizing the distance between the confined Rh atoms, an ultra‐low overpotential of 67 mV is achieved at a current density of 10 mA cm?2 in acidic solution. Experiments and first‐principles calculations demonstrate a unique distance synergy between the confined rhodium atoms in tuning the reactivity of neighboring in‐plane S atoms, which presents a volcanic trend with the inter‐rhodium distance. This study provides a new strategy to tailor the activity of MoS2 surface via modulating the distance between confined single atoms.  相似文献   

18.
Heterogeneous electrocatalysis typically involves charge transfer between surface active sites and adsorbed species. Therefore, modulating the surface charge state of an electrocatalyst can be used to enhance performance. A series of negatively charged transition‐metal (Fe, Co, Ni, Cu,and NiCo) phosphides were fabricated by designing strong electronic coupling with hydr(oxy)oxides formed in situ. Physicochemical characterizations, together with DFT computations, demonstrate that strong electronic coupling renders transition‐metal phosphides negatively charged. This facilitates destabilization of alkaline water adsorption and dissociation to result in significantly improved H2 evolution. Negatively charged Ni2P/nickel hydr(oxy)oxide for example exhibits a significantly low overpotential of 138 mV at 100 mA cm?2, superior to that without strong electronic coupling and also commercial Pt/C.  相似文献   

19.
A novel naphthalenediol‐based bis(salamo)‐type tetraoxime compound (H4L) was designed and synthesized. Two new supramolecular complexes, [Cu3(L)(μ‐OAc)2] and [Co3(L)(μ‐OAc)2(MeOH)2]·4CHCl3 were synthesized by the reaction of H4L with Cu(II) acetate dihydrate and Co(II) acetate dihydrate, respectively, and were characterized by elemental analyses and X‐ray crystallography. In the Cu(II) complex, Cu1 and Cu2 atoms located in the N2O2 sites, and are both penta‐coordinated, and Cu3 atom is also penta‐coordinated by five oxygen atoms. All the three Cu(II) atoms have geometries of slightly distorted tetragonal pyramid. In the Co(II) complex, Co1 and Co3 atoms located in the N2O2 sites, and are both penta‐coordinated with geometries of slightly distorted triangular bipyramid and distorted tetragonal pyramid, respectively, while Co2 atom is hexa‐coordinated by six oxygen atoms with a geometry of slightly distorted octahedron. These self‐assembling complexes form different dimensional supramolecular structures through inter‐ and intra‐molecular hydrogen bonds. The coordination bond cleavages of the two complexes have occurred upon the addition of the H+, and have reformed again via the neutralization effect of the OH?. The changes of the two complexes response to the H+/OH? have observed in the UV–Vis and 1H NMR spectra.  相似文献   

20.
In heterogeneous catalysis, supports play a crucial role in modulating the geometric and electronic structure of the active metal phase for optimizing the catalytic performance. A γ‐Al2O3 nanosheet that contains 27 % pentacoordinate Al3+ sites can nicely disperse and stabilize raft‐like Pt‐Sn clusters as a result of strong interactions between metal and support. Consequently, there are strong electronic interactions between the Pt and Sn atoms, resulting in an increase in the electron density of the Pt sites. When used in the propane dehydrogenation reaction, this catalyst displayed an excellent specific activity for propylene formation with >99 % selectivity, and superior anti‐coking and anti‐sintering properties. Its exceptional ability to maintain the high activity and stability at ultrahigh space velocities further showed that the sheet construction of the catalyst facilitated the kinetic transfer process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号