首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heptazine-based polymeric carbon nitrides (PCN) are promising photocatalysts for light-driven redox transformations. However, their activity is hampered by low surface area resulting in low concentration of accessible active sites. Herein, we report a bottom-up preparation of PCN nanoparticles with a narrow size distribution (ca. 10±3 nm), which are fully soluble in water showing no gelation or precipitation over several months. They allow photocatalysis to be carried out under quasi-homogeneous conditions. The superior performance of water-soluble PCN, compared to conventional solid PCN, is shown in photocatalytic H2O2 production via reduction of oxygen accompanied by highly selective photooxidation of 4-methoxybenzyl alcohol and benzyl alcohol or lignocellulose-derived feedstock (ethanol, glycerol, glucose). The dissolved photocatalyst can be easily recovered and re-dissolved by simple modulation of the ionic strength of the medium, without any loss of activity and selectivity.  相似文献   

2.
The charge transfer between hydrogen evolution photocatalysts (HEPs) and oxygen evolution photocatalysts (OEPs) is the rate‐determining step that controls the overall performance of a Z‐scheme water‐splitting system. Here, we carefully design reduced graphene oxide (RGO) nanosheets for use as solid‐state mediators to accelerate the charge carrier transfer between HEPs (e.g., polymeric carbon nitride (PCN)) and OEPs (e.g., Fe2O3), thus achieving efficient overall water splitting. The important role of RGO could also be further proven in other PCN‐based Z‐systems (BiVO4/RGO/PCN and WO3/RGO/PCN), illustrating the universality of this strategy.  相似文献   

3.
Improving the stability of lead halide perovskite quantum dots (QDs) in a system containing water is the key for their practical application in artificial photosynthesis. Herein, we encapsulate low‐cost CH3NH3PbI3 (MAPbI3) perovskite QDs in the pores of earth‐abundant Fe‐porphyrin based metal organic framework (MOF) PCN‐221(Fex) by a sequential deposition route, to construct a series of composite photocatalysts of MAPbI3@PCN‐221(Fex) (x=0–1). Protected by the MOF the composite photocatalysts exhibit much improved stability in reaction systems containing water. The close contact of QDs to the Fe catalytic site in the MOF, allows the photogenerated electrons in the QDs to transfer rapidly the Fe catalytic sites to enhance the photocatalytic activity for CO2 reduction. Using water as an electron source, MAPbI3@PCN‐221(Fe0.2) exhibits a record‐high total yield of 1559 μmol g?1 for photocatalytic CO2 reduction to CO (34 %) and CH4 (66 %), 38 times higher than that of PCN‐221(Fe0.2) in the absence of perovskite QDs.  相似文献   

4.
A novel semiconducting oligo(9‐fluorenylideneacetic acid) (OFYA) with good redox activity and stability was successfully electrosynthesized by direct anodic oxidation of 9‐fluorenylideneacetic acid (FYA) in CH2Cl2 containing boron trifluoride diethyl etherate (BFEE) as the supporting electrolyte. The as‐formed OFYA film was readily soluble in dimethyl sulfoxide and tetrahydrofuran, and partly soluble in water, alcohol, acetonitrile and acetone. FT‐IR and 1H NMR spectra, together with computational results proved that FYA was probably polymerized through the coupling at C(2) and C(7) positions. Further, OFYA was a typical green light‐emitter with maximal emission at 555 nm and its fluorescence quantum yield was distinctly improved in comparison with that of the monomer. The oligomer was also studied by UV‐vis spectroscopy, MALDL‐TOF mass spectrometry, and thermal analysis, respectively.  相似文献   

5.
Adsorbents for CO2 capture need to demonstrate efficient release. Light‐induced swing adsorption (LISA) is an attractive new method to release captured CO2 that utilizes solar energy rather than electricity. MOFs, which can be tailored for use in LISA owing to their chemical functionality, are often unstable in moist atmospheres, precluding their use. A MOF is used that can release large quantities of CO2 via LISA and is resistant to moisture across a large pH range. PCN‐250 undergoes LISA, with UV flux regulating the CO2 desorption capacity. Furthermore, under UV light, the azo residues within PCN‐250 have constrained, local, structural flexibility. This is dynamic, rapidly switching back to the native state. Reusability tests demonstrate a 7.3 % and 4.9 % loss in both adsorption and LISA capacity after exposure to water for five cycles. These minimal changes confirm the structural robustness of PCN‐250 and its great potential for triggered release applications.  相似文献   

6.
Halide perovskite quantum dots (QDs) have great potential in photocatalytic applications if their low charge transportation efficiency and chemical instability can be overcome. To circumvent these obstacles, we anchored CsPbBr3 QDs (CPB) on NHx‐rich porous g‐C3N4 nanosheets (PCN) to construct the composite photocatalysts via N?Br chemical bonding. The 20 CPB‐PCN (20 wt % of QDs) photocatalyst exhibits good stability and an outstanding yield of 149 μmol h?1 g?1 in acetonitrile/water for photocatalytic reduction of CO2 to CO under visible light irradiation, which is around 15 times higher than that of CsPbBr3 QDs. This study opens up new possibilities of using halide perovskite QDs for photocatalytic application.  相似文献   

7.
Moderate‐molecular‐weight copolyamides soluble in N‐methylpyrrolidone (NMP) containing dissolved CaCl2 can be obtained by polycondensation of terephthalic acid (TPA), p‐phenylenediamine (PPD), and p‐aminobenzoic acid (PABA) with triphenyl phosphite/pyridine in NMP. The randomly copolymerized polymers contain more than 40 mol‐% of PABA and are easily soluble in NMP.  相似文献   

8.
Different Pd‐complexes (see 2a – d and 3 ) with and without perfluoroalkyl tags were deposited on fluorous reversed‐phase silica 1 and unmodified silica gel. These supported complexes were successfully used as precatalysts for the Suzuki reaction in H2O. H2O‐Soluble aryl bromides were easily converted to the corresponding biphenyls. Although none of the complexes is H2O‐soluble, the active catalyst is most likely homogeneously dissolved. Nevertheless, the Pd‐leaching into the product was low.  相似文献   

9.
To prepare water‐soluble, syndiotacticity‐rich poly(vinyl alcohol) (PVA) microfibrils for various industrial applications, we synthesized syndiotacticity‐rich, low molecular weight PVA by the solution polymerization of vinyl pivalate (VPi) in tetrahydrofuran (THF) at low temperatures with 2,2′‐azobis(2,4‐dimethylvaleronitrile) (ADMVN) as an initiator and successive saponification of poly(vinyl pivalate) (PVPi). Effects of the initiator and monomer concentrations and the polymerization temperature were investigated in terms of the polymerization behaviors and molecular structures of PVPi and the corresponding syndiotacticity‐rich PVA. The polymerization rate of VPi in THF was proportional to the 0.91 power of the ADMVN concentration, indicating the heterogeneous nature of THF polymerization. The low‐temperature solution polymerization of VPi in THF with ADMVN proved to be successful in obtaining water‐soluble PVA with a number‐average degree of polymerization (Pn) of 300–900, a syndiotactic dyad content of 60–63%, and an ultimate conversion of VPi into PVPi of over 75%. Despite the low molecular weight of PVA with Pn = 800, water‐soluble PVA microfibrillar fibers were prepared because of the high level of syndiotacticity. In contrast, for PVA with Pn = 330, shapeless and globular morphologies were observed, indicating that molecular weight has an important role in the in situ fibrillation of syndiotacticity‐rich PVA. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1103–1111, 2002  相似文献   

10.
We describe two water‐soluble ruthenium complexes, [ 1 ]Cl2 and [ 2 ]Cl2, that photodissociate to release a cytotoxic nicotinamide phosphoribosyltransferase (NAMPT) inhibitor with a low dose (21 J cm−2) of red light in an oxygen‐independent manner. Using a specific NAMPT activity assay, up to an 18‐fold increase in inhibition potency was measured upon red‐light activation of [ 2 ]Cl2, while [ 1 ]Cl2 was thermally unstable. For the first time, the dark and red‐light‐induced cytotoxicity of these photocaged compounds could be tested under hypoxia (1 % O2). In skin (A431) and lung (A549) cancer cells, a 3‐ to 4‐fold increase in cytotoxicity was found upon red‐light irradiation for [ 2 ]Cl2, whether the cells were cultured and irradiated with 1 % or 21 % O2. These results demonstrate the potential of photoactivated chemotherapy for hypoxic cancer cells, in which classical photodynamic therapy, which relies on oxygen activation, is poorly efficient.  相似文献   

11.
《Electroanalysis》2006,18(4):379-390
Combining vapor‐surface sol‐gel deposition of titania with alternate adsorption of oppositely charged iron heme proteins provided ultrathin {TiO2/protein}n films with reversible voltammetry extended to 15 TiO2/protein bilayers, more than twice that of more conventional polyion‐protein or nanoparticle‐protein films made by alternate layer‐by‐layer adsorption. Catalytic activity toward O2, H2O2, and NO was also improved significantly compared to the conventionally fabricated films. The method involves vaporization of titanium butoxide into thin films of water, forming porous TiO2 sol‐gel layers. Myoglobin (Mb), hemoglobin (Hb), and horseradish peroxidase (HRP) were assembled by adsorption alternated with the vapor‐deposited TiO2 layers. Improved electrochemical and catalytic performance may be related to better film permeability leading to better mass transport within the films, as suggested by studies with soluble voltammetric probes, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The electrochemical and electrocatalytic activity of the films can be controlled by tailoring the amount of water with which the metal alkoxide precursor vapor reacts and the number of bilayers deposited in the assembly.  相似文献   

12.
A novel, straightforward and versatile chemical pathway has been studied to functionalize water‐soluble chitosan oligomers. This metal‐free methodology is based on the epoxy‐amine reaction of the allyl glycidyl ether with chitosan, followed by thiol‐ene radical coupling reaction of ω‐functional mercaptans, using 4,4′‐Azobis(4‐cyanovaleric acid) as a free radical initiator. Both reactions were entirely carried out in water. In a preliminary step, chitosan depolymerization was carried out using H2O2 in an acetic medium under 100 W microwave irradiation, optimizing the yield of water‐soluble oligomers. Functionalization by six different thiols bearing alcohol, carboxylic acid, ester, and amino groups was then performed, leading to a range of functional oligochitosans with different grafting efficiencies. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 39–48  相似文献   

13.
The synthesis, characterisation and biological activity of water‐soluble Ag(I)‐NHC complexes, general formula Na[(NHC)AgCl] where NHC is a sulfonated and sterically hindered N‐heterocyclic carbene, is reported. The Ag‐NHC complexes (2a–e) were synthesised by reacting the corresponding sulfonated NHC ligands with Ag2O in the presence of NaCl or NaBr in methanol/water (1:1) solution. Synthesised silver (I)‐N‐heterocyclic carbene complexes have been characterised by NMR, micro‐analysis and HRMS spectroscopic methods. The IC50 values of these complexes were determined by a proliferation BrdU enzyme‐linked immunosorbent assay (ELISA) against HeLa (human cervix carcinoma), HT29 (human adenocarcinoma) and L929 (mouse fibroblast) cell lines. These complexes have been highlighted as promising and original platforms for building new types of metalodrug. All new water‐soluble Ag(I) complexes demonstrated remarkable cytotoxic activity against HeLa, HT29 and L929 cell lines.  相似文献   

14.
Inspired by the anti‐freezing mechanisms found in nature, ionic compounds (ZnCl2/CaCl2) are integrated into cellulose hydrogel networks to enhance the freezing resistance. In this work, cotton cellulose is dissolved by a specially designed ZnCl2/CaCl2 system, which endows the cellulose hydrogels specific properties such as excellent freeze‐tolerance, good ion conductivity, and superior thermal reversibility. Interestingly, the rate of cellulose coagulation could be promoted by the addition of extra water or glycerol. This new type of cellulose‐based hydrogel may be suitable for the construction of flexible devices used at temperature as low as ?70 °C.  相似文献   

15.
The catalytic activity of l ‐arginine‐coated nano‐Fe3O4 particles (Fe3O4@l ‐arginine) proves they are a novel magnetic catalyst without the use of heat and reflux for the synthesis of 1,3‐diaryl‐2‐N‐azaphenalene derivatives and n‐acyl‐1,3‐diaryl‐2‐N‐azaphenylene derivatives in a one‐pot pseudo‐five‐component condensation reaction of compounds of 2,7‐naphthalene diol, aldehydes, and ammonia derivatives (ammonium acetate or ammonium hydrogen phosphate) and solvent (water and alcohol) with high yield and short reaction times, economical, and simple workup. The structure and magnetic properties of the obtained nanoparticles were characterized via Fourier transform infrared spectroscopy (IR) and field emission scanning electron microscopy (FE‐SEM). The results demonstrated that the average size of the synthesized magnetite nanoparticles is about 21 nm. In addition, the heterogeneous catalyst can be easily recovered magnetically and can be reused for further runs without significant loss of its catalytic activity.  相似文献   

16.
The water‐soluble polypyridine copper complex [Cu(F3TPA)(ClO4)2] [ 1 ; F3TPA=tris(2‐fluoro‐6‐pyridylmethyl)amine] catalyzes water oxidation in a pH 8.5 borate buffer at a relatively low overpotential of 610 mV. Assisted by photosensitizer and an electron acceptor, 1 also exhibits activity as a homogeneous catalyst for photo‐induced O2 evolution with a maximum turnover frequency (TOF) of (1.58±0.03)×10?1 s?1 and a maximum turnover number (TON) of 11.61±0.23. In comparison, the reference [Cu(TPA)(ClO4)2] [TPA=tris(2‐pyridylmethyl)amine] displayed almost no activity under either set of conditions, implying the crucial role of the ligand in determining the behavior of the catalyst. Experimental evidence indicate the molecular catalytic nature of 1 , leading to a potentially practical strategy to apply the copper complex in a photoelectrochemical device for water oxidation.  相似文献   

17.
Aggregation‐induced emission (AIE) is an attractive phenomenon in which materials display strong luminescence in the aggregated solid states rather than in the conventional dissolved molecular states. However, highly luminescent inks based on AIE are hard to be obtained because of the difficulty in finely controlling the crystallinity of AIE materials at nanoscale. Herein, we report the preparation of highly luminescent inks via oil‐in‐water microemulsion induced aggregation of Cu–I hybrid clusters based on the highly soluble copper iodide‐tris(3‐methylphenyl)phosphine (Cu4I4(P‐(m‐Tol)3)4) hybrid. Furthermore, we can synthesize a series of AIE inks with different light‐emission colors to cover the whole visible spectrum range via a facile ligand exchange processes. The assemblies of Cu–I hybrid clusters with AIE characteristics will pave the way to fabricate low‐cost highly luminescent inks.  相似文献   

18.
A water‐soluble polycarbonate with dimethylamino pendant groups, poly(2‐dimethylaminotrimethylene carbonate) (PDMATC), is synthesized and characterized. First, the six‐membered carbonate monomer, 2‐dimethylaminotrimethylene carbonate (DMATC), is prepared via the cyclization reaction of 2‐(dimethylamino)propane‐1,3‐diol with triphosgene in the presence of triethylamine. Although the attempted ring‐opening polymerization (ROP) of DMATC with Sn(Oct)2 as a catalyst fails, the ROP of DMATC is successfully carried out with Novozym‐435 as a catalyst to give water‐soluble aliphatic polycarbonate PDMATC with low cytotoxicity and good degradability.  相似文献   

19.
A novel method for indirect determination of tiopronin by extraction flotation of copper(II) with an ammonium sulfate‐water‐n‐propyl alcohol system was developed. The effects of different parameters, such as acidity, the amount of NH4SCN and various salts on the flotation yield of Cu(II), have been studied to optimize the experimental conditions. Under the optimum conditions, Cu(II) is reduced to Cu(I) by tiopronin, and the resulting Cu(I) can react with SCN? to form a white emulsion precipitate CuSCN. In the presence of (NH4)2SO4, the mixture consisting of n‐propyl alcohol and water can be separated into an n‐propyl alcohol phase and a water phase. In the process of phase separation of n‐propyl alcohol from water, the precipitated CuSCN is extracted and stays in the interface of n‐propyl alcohol and water. The amount of tiopronin can be determined by measuring the flotation yield of Cu(II). The detection limit is 0.32 mg L?1 and the linear range is maintained in the range of 0.40±13.0 mg L?1 with a correlation coefficient of 0.9991. This proposed method has been successfully applied to the determination of tiopronin in tablets, urine and human plasma with satisfactory results.  相似文献   

20.
Summary: Poly(vinyl acetate) chains end‐capped by a Co(acac)2 complex [PVAc‐Co(acac)2] were prepared by bulk cobalt‐mediated radical polymerization (CMRP) of vinyl acetate and used for grafting fullerene (C60) with four PVAc arms at low temperature (30 °C). A photoactive water‐soluble poly(vinyl alcohol)/C60 nanohybrid was then prepared by hydrolysis of the PVAc arms of the nanohybrid. Because of photoactivity and very low cytotoxicity, this type of water‐soluble nanohybrid is very promising for the photodynamic cancer therapy.

Strategy for the preparation of PVAc/C60 nanohybrid and hydrolysis of PVAc/C60 nanohybrid into PVOH/C60 nanohybrid.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号