首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A novel approach to solubilize single‐walled carbon nanotubes (SWCNTs) in the aqueous phase is described by employing supramolecular surface modification. We use cyclodextrin complexes of synthetic molecules that contain a planar pyrene moiety or a bent, shape‐fitted triptycene moiety as a binding group connected through a spacer to an adamantane moiety that is accommodated in the cyclodextrin cavity. The binding groups attach to the sidewalls of SWCNTs through a π–π stacking interaction to yield a supramolecular system that allows the SWCNTs to dissolve in the aqueous phase through the formed hydrophilic cyclodextrin shell. The black aqueous SWCNT solutions obtained are stable over a period of months. They are characterized through absorbance, static, and time‐resolved fluorescence spectroscopy as well as Raman spectroscopy, TEM, and fluorescence‐decay measurements. Furthermore, the shape‐fitted triptycene‐based system shows a pronounced selectivity for SWCNTs with a diameter of 1.0 nm.  相似文献   

2.
Covalent post‐synthetic modification is a versatile method for gaining high‐level synthetic control over functionality within porous metal–organic frameworks and for generating new materials not accessible through one‐step framework syntheses. Here we apply this topotactic synthetic approach to a porous spin crossover framework and show through detailed comparison of the structures and properties of the as‐synthesised and covalently modified phases that the modification reaction proceeds quantitatively by a thermally activated single‐crystal‐to‐single‐crystal transformation to yield a material with lowered spin‐switching temperature, decreased lattice cooperativity, and altered color. Structure–function relationships to emerge from this comparison show that the approach provides a new route for tuning spin crossover through control over both outer‐sphere and steric interactions.  相似文献   

3.
4.
Frustrated Lewis pair (FLP) chemistry enables a rare example of alkyne 1,2‐hydrocarbation with N‐methylacridinium salts as the carbon Lewis acid. This 1,2‐hydrocarbation process does not proceed through a concerted mechanism as in alkyne syn‐hydroboration, or through an intramolecular 1,3‐hydride migration as operates in the only other reported alkyne 1,2‐hydrocarbation reaction. Instead, in this study, alkyne 1,2‐hydrocarbation proceeds by a novel mechanism involving alkyne dehydrocarbation with a carbon Lewis acid based FLP to form the new C−C bond. Subsequently, intermolecular hydride transfer occurs, with the Lewis acid component of the FLP acting as a hydride shuttle that enables alkyne 1,2‐hydrocarbation.  相似文献   

5.
Uniform mesoporous zeolite ZSM‐5 crystals have been successfully fabricated through a simple hydrothermal synthetic method by utilizing ammonium‐modified chitosan and tetrapropylammonium hydroxide (TPAOH) as the meso‐ and microscale template, respectively. It was revealed that mesopores with diameters of 5–20 nm coexisted with microporous network within mesoporous ZSM‐5 crystals. Ammonium‐modified chitosan was demonstrated to serve as a mesoporogen, self‐assembling with the zeolite precursor through strong static interactions. As expected, the prepared mesoporous ZSM‐5 exhibited greatly enhanced catalytic activities compared with conventional ZSM‐5 and Al‐MCM‐41 in reactions involving bulky molecules, such as the Claisen–Schmidt condensation of 2‐hydroxyacetophenone with benzaldehyde and the esterification reaction of dodecanoic acid and 2‐ethylhexanol.  相似文献   

6.
We show a new approach to manipulating the through‐space spin–spin interaction by utilizing the confined cavity of a self‐assembled M6L4 coordination cage. The coordination cage readily encapsulates stable organic radicals in solution, which brings the spin centers of the radicals closer to each other. In sharp contrast to the fact that the radical in solution in the absence of the cage is in a doublet state, in the presence of the cage through‐space spin–spin interaction is induced through cage‐encapsulation effects in solution as well as in the solid state, resulting in the triplet state of the complex. These results were confirmed by ESR spectroscopy and X‐ray crystallography. The quantity of triplet species generated by encapsulation in the cage increases with increasing affinity of the radicals to the cage. We estimated the affinity between several types of guests and the cage in solution by cyclic voltammetry. We also demonstrate that the through‐space interaction of organic radicals within the self‐assembled coordination cage can be controlled by external stimuli such as heat or pH.  相似文献   

7.
A gold‐catalyzed highly regio‐ and chemoselective oxidative ring expansion of 2‐alkynyl‐1,2‐dihydropyridines and its analogues using pyridine‐N‐oxide as the oxidant has been developed. Ring expansion proceeds through exclusive 1,2‐migration of a vinyl or phenyl group, whereas no 1,2‐H and 1,2‐N migration take place. The reaction provides an efficient and attractive route to various types of medium‐sized azepine derivatives in generally high to excellent yields with a broad functional group tolerance. DFT studies indicate that the reaction proceeds through the formation of a cyclopropyl gold intermediate, and no gold carbene species is involved.  相似文献   

8.
Inverse opal monolithic flow‐through structures of conducting polymer (CP) were achieved in microfluidic channels for lab‐on‐a‐chip (LOC) applications. In order to achieve the uniformly porous monolith, polystyrene (PS) colloidal crystal (CC) templates were fabricated in microfluidic channels. Consequently, an inverse opal polyaniline (PANI) structure was achieved on‐chip, through a two‐step process involving the electrochemical growth of PANI and subsequent removal of the template. In this work the effect of CP electropolymerisation time on these structures is discussed. It was found that growth time is critical in achieving an ordered structure with well‐defined flow‐through pores. This is significant as these optimised porous structures will allow for maximising the surface area of the monolith and will also result in well‐defined flow profiles through the microchannel.  相似文献   

9.
Microlens projection lithography is a kind of non‐contact projection lithography that uses microlens array components as the projection lenses to produce a large area of microstructural array patterns on photoresisting film. This technology requires partial masking of light on the non‐lens portion of the microlens array, and the conventional approach is through an aligned exposure followed by the plating process that would require accurate positioning equipment, so it is naturally time‐consuming as well as costly in terms of the entire production process. This study applies an innovative technology in the production process that uses a microcircular‐hole array to penetrate a stainless‐steel substrate as the mold, and in collaboration with gas‐assisted thermal pressuring production process that utilizes surface tension of the plastic film to fabricate the hemisphere‐shaped plastic microlens array that is capable of masking light as the projection lens. With such a lens, in collaboration with optic expansion film, Fresnel lens, and millimeter‐grade single‐pattern photomasks, the microlens array projection lithographical optical system is constructed. Using regular millimeter‐grade photomasks, a micrometer‐grade array pattern is successfully fabricated on the photoresist layer through the process of projection exposure and development using such a microlens array projection lithographical optical system. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Binding of monoclonal antibodies (mAbs) onto a cell surface triggers antibody‐mediated effector killing by innate immune cells through complement activation. As an alternative to mAbs, synthetic systems that can recruit endogenous antibodies from the blood stream to a cancer cell surface could be of great relevance. Herein, we explore antibody‐recruiting polymers (ARPs) as a novel class of immunotherapy. ARPs consist of a cell‐binding motif linked to a polymer that contains multiple small molecule antibody‐binding motifs along its backbone. As a proof of concept, we employ a lipid anchor that inserts into the phospholipid cell membrane and make use of a polymeric activated ester scaffold onto which we substitute dinitrophenol as an antibody‐binding motif. We demonstrate that ARPs allow for high avidity antibody binding and drive antibody recruitment to treated cells for several days. Furthermore, we show that ARP‐treated cancer cells are prone to antibody‐mediated killing through phagocytosis by macrophages.  相似文献   

11.
We report on the capability of polydopamine (PDA), a mimic of mussel adhesion proteins, as an electron gate as well as a versatile adhesive for mimicking natural photosynthesis. This work demonstrates that PDA accelerates the rate of photoinduced electron transfer from light‐harvesting molecules through two‐electron and two‐proton redox‐coupling mechanism. The introduction of PDA as a charge separator significantly increased the efficiency of photochemical water oxidation. Furthermore, simple incorporation of PDA ad‐layer on the surface of conducting materials, such as carbon nanotubes, facilitated fast charge separation and oxygen evolution through the synergistic effect of PDA‐mediated proton‐coupled electron transfer and the high conductivity of the substrate. Our work shows that PDA is an excellent electron acceptor as well as a versatile adhesive; thus, PDA constitutes a new electron gate for harvesting photoinduced electrons and designing artificial photosynthetic systems.  相似文献   

12.
In most synthetic elastomers, changing the physical properties by monomer choice also results in a change to the crystallinity of the material, which manifests through alteration of its mechanical performance. Using organocatalyzed stereospecific additions of thiols to activated alkynes, high‐molar‐mass elastomers were isolated via step‐growth polymerization. The resulting controllable double‐bond stereochemistry defines the crystallinity and the concomitant mechanical properties as well as enabling the synthesis of materials that retain their excellent mechanical properties through changing monomer composition. Using this approach to elastomer synthesis, further end group modification and toughening through vulcanization strategies are also possible. The organocatalytic control of stereochemistry opens the realm to a new and easily scalable class of elastomers that will have unique chemical handles for functionalization and post synthetic processing.  相似文献   

13.
Dearomative annulation of indoles has emerged as a powerful tool for the preparation of polycyclic indoline‐based alkaloids. Compared with well‐established methods towards five‐membered‐ring‐fused indolines, the six‐membered‐ring‐fused indolines are rarely accessed under thermal conditions. Herein, a dearomative [4+2] annulation between different indoles is developed through an electrochemical pathway. This transformation offers a remarkably regio‐ and stereoselective route to highly functionalized pyrimido[5,4‐b]indoles under oxidant‐ and metal‐free conditions. Notably, this electrochemical approach maintains excellent functional‐group tolerance and can be extended as a modification tactic for pharmaceutical research. Preliminary mechanism studies indicate that the electrooxidation annulation proceeds through radical–radical cross‐coupling between an indole radical cation and an N‐centered radical generated in situ.  相似文献   

14.
Constructing single‐molecule parallel circuits with multiple conduction channels is an effective strategy to improve the conductance of a single molecular junction, but rarely reported. We present a novel through‐space conjugated single‐molecule parallel circuit (f‐4Ph‐4SMe) comprised of a pair of closely parallelly aligned p‐quaterphenyl chains tethered by a vinyl bridge and end‐capped with four SMe anchoring groups. Scanning‐tunneling‐microscopy‐based break junction (STM‐BJ) and transmission calculations demonstrate that f‐4Ph‐4SMe holds multiple conductance states owing to different contact configurations. When four SMe groups are in contact with two electrodes at the same time, the through‐bond and through‐space conduction channels work synergistically, resulting in a conductance much larger than those of analogous molecules with two SMe groups or the sum of two p‐quaterphenyl chains. The system is an ideal model for understanding electron transport through parallel π‐stacked molecular systems and may serve as a key component for integrated molecular circuits with controllable conductance.  相似文献   

15.
We explore a photochemical approach to achieve an ordered polymeric structure at the sub‐monolayer level on a metal substrate. In particular, a tetraphenylporphyrin derivative carrying para‐amino‐phenyl functional groups is used to obtain extended and highly ordered molecular wires on Ag(110). Scanning tunneling microscopy and density functional theory calculations reveal that porphyrin building blocks are joined through azo bridges, mainly as cis isomers. The observed highly stereoselective growth is the result of adsorbate/surface interactions, as indicated by X‐ray photoelectron spectroscopy. At variance with previous studies, we tailor the formation of long‐range ordered structures by the separate control of the surface molecular diffusion through sample heating, and of the reaction initiation through light absorption. This previously unreported approach shows that the photo‐induced covalent stabilization of self‐assembled molecular monolayers to obtain highly ordered surface covalent organic frameworks is viable by a careful choice of the precursors and reaction conditions.  相似文献   

16.
Directing self‐assembly processes out‐of‐equilibrium to yield kinetically trapped materials with well‐defined dimensions remains a considerable challenge. Kinetically controlled assembly of self‐synthesizing peptide‐functionalized macrocycles through a nucleation–growth mechanism is reported. Spontaneous fiber formation in this system is effectively shut down as most of the material is diverted into metastable non‐assembling trimeric and tetrameric macrocycles. However, upon adding seeds to this mixture, well‐defined fibers with controllable lengths and narrow polydispersities are obtained. This seeded growth strategy also allows access to supramolecular triblock copolymers. The resulting noncovalent assemblies can be further stabilized through covalent capture. Taken together, these results show that self‐synthesizing materials, through their interplay between dynamic covalent bonds and noncovalent interactions, are uniquely suited for out‐of‐equilibrium self‐assembly.  相似文献   

17.
Controlled preparation of tri‐ and tetrasubstituted furans, as well as carbazoles has been achieved through chemo‐ and regioselective metal‐catalyzed cyclization reactions of cumulenic alcohols. The gold‐ and palladium‐catalyzed cycloisomerization reactions of cumulenols, including indole‐tethered 2,3,4‐trien‐1‐ols, to trisubstituted furans was effective, due to a 5‐endo‐dig oxycyclization by attack of the hydroxy group onto the central cumulene double bond. In contrast, palladium‐catalyzed heterocyclization/coupling reactions with 3‐bromoprop‐1‐enes furnished tetrasubstituted furans. Also studied was the palladium‐catalyzed cyclization/coupling sequence involving protected indole‐tethered 2,3,4‐trien‐1‐ols and 3‐bromoprop‐1‐enes that exclusively generated trisubstituted carbazole derivatives. These results could be explained through a selective 6‐endo‐dig cumulenic hydroarylation, followed by aromatization. DFT calculations were carried out to understand this difference in reactivity.  相似文献   

18.
Heterobimetallic catalysis offers new opportunities for reactivity and selectivity but still presents challenges, and only a few metal combinations have been explored so far. Reported here is a Pt‐Au heterobimetallic catalyst system for the synthesis of a family of multi‐heteroaromatic structures through tandem cyclization/C?X coupling reaction. Au‐catalyzed 6‐endo‐cyclization takes place as the first fast step. Pt‐Au clusters are proposed to be responsible for the increased reactivity in the second step, that is, the intermolecular nucleophilic addition which occurs through an outer‐sphere mechanism by hybrid homogeneous‐heterogeneous catalysis.  相似文献   

19.
A domino Friedel–Crafts/nitro‐Michael reaction between 4‐substituted indoles and nitroethene is presented. The reaction is catalyzed by BINOL‐derived phosphoric acid catalysts, and delivers the corresponding 3,4‐ring‐fused indoles with very good results in terms of yields and diastereo‐ and enantioselectivities. The tricyclic benzo[cd]indole products bear a nitro group at the right position to serve as precursors of ergot alkaloids, as demonstrated by the formal synthesis of 6,7‐secoagroclavine from one of the adducts. DFT calculations suggest that the outcome of the reaction stems from the preferential evolution of a key nitronic acid intermediate through a nucleophilic addition pathway, rather than to the expected “quenching” through protonation.  相似文献   

20.
Pinching molecules via chemical strain suggests intuitive consequences, such as compression at the pinched site and clothespin‐like opening of other parts of the structure. If this opening affects two spin centers, it should result in reduced communication between them. We show that for naphthalene‐bridged biscobaltocenes with competing through‐space and through‐bond pathways, the consequences of pinching are far less intuitive: despite the known dominance of through‐space interactions, the bridge plays a much larger role for exchange spin coupling than previously assumed. Based on a combination of chemical synthesis, structural, magnetic, and redox characterization, and a newly developed theoretical pathway analysis, we can suggest a comprehensive explanation for this non‐intuitive behavior. These results are of interest for molecular spintronics, as naphthalene‐linked cobaltocenes can form wires on surfaces for potential spin‐only information transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号