首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Carbon aerogels (CAs) with 3D interconnected networks hold promise for application in areas such as pollutant treatment, energy storage, and electrocatalysis. In spite of this, it remains challenging to synthesize high-performance CAs on a large scale in a simple and sustainable manner. We report an eco-friendly method for the scalable synthesis of ultralight and superporous CAs by using cheap and widely available agarose (AG) biomass as the carbon precursor. Zeolitic imidazolate framework-8 (ZIF-8) with high porosity is introduced into the AG aerogels to increase the specific surface area and enable heteroatom doping. After pyrolysis under inert atmosphere, the ZIF-8/AG-derived nitrogen-doped CAs show a highly interconnected porous mazelike structure with a low density of 24 mg cm−3, a high specific surface area of 516 m2 g−1, and a large pore volume of 0.58 cm−3 g−1. The resulting CAs exhibit significant potential for application in the adsorption of organic pollutants.  相似文献   

2.
A facile and sustainable procedure for the synthesis of nitrogen‐doped hierarchical porous carbons with a three‐dimensional interconnected framework (NHPC‐3D) was developed. The strategy, based on a colloidal crystal‐templating method, utilizes nitrogenous dopamine as the precursor due to its unique properties, including self‐polymerization under mild alkaline conditions, coating onto various surfaces, a high carbonization yield, and well‐preserved nitrogen doping after heat treatment. The obtained NHPC‐3D possesses a high surface area of 1056 m2 g?1, a large pore volume of 2.56 cm3 g?1, and a high nitrogen content of 8.2 wt %. The NHPC‐3D is implemented as the electrode material of a supercapacitor and exhibits a specific capacitance as high as 252 F g?1 at a current density of 2 A g?1. The device also shows a high capacitance retention of 75.7 % at a higher current density of 20 A g?1 in aqueous electrolyte due to a sufficient surface area for charge accommodation, reversible pseudocapacitance, and minimized ion‐transport resistance, as a result of the advantageous interconnected hierarchical porous texture. These results showcase NHPC‐3D as a promising candidate for electrode materials in supercapacitors.  相似文献   

3.
Hierarchically structured zeolites (HSZs) have gained much academic and industrial interest owing to their multiscale pore structures and consequent excellent performances in varied chemical processes. Although a number of synthetic strategies have been developed in recent years, the scalable production of HSZs single crystals with penetrating and three‐dimensionally (3‐D) interconnected mesopore systems but without using a mesoscale template is still a great challenge. Herein, based on a steam‐assisted crystallization (SAC) method, we report a facile and scalable strategy for the synthesis of single‐crystalline ZSM‐5 HSZs by using only a small amount of micropore‐structure‐directing agents (i.e., tetrapropylammonium hydroxide). The synthesized materials exhibited high crystallinity, a large specific surface area of 468 m2 g?1, and a pore volume of 0.43 cm3 g?1 without sacrificing the microporosity (≈0.11 cm3 g?1) in a product batch up to 11.7 g. Further, a kinetically controlled nucleation–growth mechanism is proposed for the successful synthesis of single‐crystalline ZSM‐5 HSZs with this novel process. As expected, compared with the conventional microporous ZSM‐5 and amorphous mesoporous Al‐MCM‐41 counterparts, the synthesized HSZs exhibited significantly enhanced activity and stability and prolonged lifetime in model reactions, especially when bulky molecules were involved.  相似文献   

4.
Polymer‐derived carbon aerogels can be obtained by direct polymerization of monomers under hypersaline conditions using inorganic salts. This allows for significantly increased mechanical robustness and avoiding special drying processes. This concept was realized by conducting the polymerization of phenol–formaldehyde (PF) in the presence of ZnCl2 salt. Afterwards, the simultaneous carbonization and foaming process conveniently converts the PF monolith into a foam‐like carbon aerogel. ZnCl2 plays a key role, serving as dehydration agent, foaming agent, and porogen. The carbon aerogels thus obtained are of very low density (25 mg cm?3), high specific surface area (1340 m2 g?1), and have a large micro‐ and mesopore volume (0.75 cm3 g?1). The carbon aerogels show very promising potential in the separation/extraction of organic pollutants and for energy storage.  相似文献   

5.
Nitrogen‐enriched porous nanocarbon, graphene, and conductive polymers attract increasing attention for application in supercapacitors. However, electrode materials with a large specific surface area (SSA) and a high nitrogen doping concentration, which is needed for excellent supercapacitors, has not been achieved thus far. Herein, we developed a class of tetracyanoquinodimethane‐derived conductive microporous covalent triazine‐based frameworks (TCNQ‐CTFs) with both high nitrogen content (>8 %) and large SSA (>3600 m2 g?1). These CTFs exhibited excellent specific capacitances with the highest value exceeding 380 F g?1, considerable energy density of 42.8 Wh kg?1, and remarkable cycling stability without any capacitance degradation after 10 000 cycles. This class of CTFs should hold a great potential as high‐performance electrode material for electrochemical energy‐storage systems.  相似文献   

6.
Layered nickel silicate nanoflowers (NSFs) with a hierarchical nanostructure have been successfully fabricated by a template‐free solvothermal method. The as‐prepared nanoflowers were composed of many interconnected edge‐curving lamellae with a thickness of about 15 nm and had a high specific surface area (279 m2 g?1) and large pore volume (0.67 cm3 g?1). The highly dispersed small silver nanoparticles (AgNPs) were immobilized on the surface of NSFs through the in situ reduction of Ag+ by Sn2+. The AgNP/NSF nanocomposites showed a high performance in the catalytic reduction of 4‐nitrophenol. In particular, there was no visible decrease in the catalytic activity of the reused catalysts even after being recycled four times. The as‐prepared AgNP/NSF nanocomposites might be an excellent catalyst owing to their availability, formability, chemical and thermal stability, and high specific surface area.  相似文献   

7.
Nanoporous carbons (NPCs) have large specific surface areas, good electrical and thermal conductivity, and both chemical and mechanical stability, which facilitate their use in energy storage device applications. In the present study, highly graphitized NPCs are synthesized by one‐step direct carbonization of cobalt‐containing zeolitic imidazolate framework‐67 (ZIF‐67). After chemical etching, the deposited Co content can be completely removed to prepare pure NPCs with high specific surface area, large pore volume, and intrinsic electrical conductivity (high content of sp2‐bonded carbons). A detailed electrochemical study is performed using cyclic voltammetry and galvanostatic charge–discharge measurements. Our NPC is very promising for efficient electrodes for high‐performance supercapacitor applications. A maximum specific capacitance of 238 F g?1 is observed at a scan rate of 20 mV s?1. This value is very high compared to previous works on carbon‐based electric double layer capacitors.  相似文献   

8.
Ti/MCM‐41 is a well‐known heterogeneous catalyst for alkene epoxidation with organic peroxides. This titanosilicate contains isolated titanium atoms forming part of a framework of mesoporous silica whose structure is formed by parallel hexagonal channels 3.2 nm in diameter. The surface area and porosity of Ti/MCM‐41 are about 880 m2 g?1 and 0.70 cm3 g?1, respectively. These values are among the highest for any material. Herein, we show that Ti/MCM‐41 exhibits photovoltaic activity. Dye‐sensitized solar cells using mesoporous Ti/MCM‐41 (2.8–5.7 % Ti content) as active layer, black dye N3 as photosensitizer and I3?/I? in methoxyacetonitrile as electrolyte exhibit a VOC, JSC and FF of 0.44 V, 0.045 mA cm?2 and 0.33, respectively. These values compare well against 0.75 V, 4.1 mA cm?2 and 0.64, respectively, measured for analogous solar cells using conventional P‐25 TiO2. However, the specific current density (JSC/Ti atom) for the Ti/MCM‐41 is very similar to that of P25 TiO2.  相似文献   

9.
Porous carbon with high specific surface area (SSA), a reasonable pore size distribution, and modified surface chemistry is highly desirable for application in energy storage devices. Herein, we report the synthesis of nitrogen‐containing mesoporous carbon with high SSA (1390 m2 g?1), a suitable pore size distribution (1.5–8.1 nm), and a nitrogen content of 4.7 wt % through a facile one‐step self‐assembly process. Owing to its unique physical characteristics and nitrogen doping, this material demonstrates great promise for application in both supercapacitors and encapsulating sulfur as a superior cathode material for lithium–sulfur batteries. When deployed as a supercapacitor electrode, it exhibited a high specific capacitance of 238.4 F g?1 at 1 A g?1 and an excellent rate capability (180 F g?1, 10 A g?1). Furthermore, when an NMC/S electrode was evaluated as the cathode material for lithium–sulfur batteries, it showed a high initial discharge capacity of 1143.6 mA h g?1 at 837.5 mA g?1 and an extraordinary cycling stability with 70.3 % capacity retention after 100 cycles.  相似文献   

10.
PDMAEMA‐b‐PMAA block copolymers were prepared by the sequential RAFT polymerization of DMAEMA and tBMA, followed by hydrolysis. Phosphotungstic acid (HPW) was anchored to the PDMAEMA blocks through electrostatic interactions and the as‐obtained HPW/PDMAEMA‐b‐PMAA was added to the synthesis of ZIF‐8. During the formation of ZIF‐8, the PMAA blocks coordinated to the Zn2+ ions through their carboxy groups, along with the HPW groups that were anchored to the PDMAEMA blocks. In this way, the block copolymer could consolidate the interactions between HPW and ZIF‐8 and prevent the leakage of HPW. Finally, the HPW/PDMAEMA‐b‐PMAA/ZIF‐8 ternary lamellar composite was obtained and the structure of the HPW/PDMAEMA‐b‐PMAA/ZIF‐8 hybrid material was characterized by using powder X‐ray diffraction (PXRD), X‐ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). As a photocatalyst, the HPW/PDMAEMA‐b‐PMAA/ZIF‐8 ternary lamellar composite showed excellent photoactivity for the degradation of methylene blue (MB). The rate of degradation of MB was 0.0240 min?1, which was 7.5‐times higher than that of commercially available P25 (0.0032 min?1). In the presence of H2O2, the kinetic degradation parameters of the composite reached 0.0634 min?1, which was about 19.8‐times higher than that of P25.  相似文献   

11.
A series of hierarchical activated mesoporous carbons (AMCs) were prepared by the activation of highly ordered, body‐centered cubic mesoporous phenolic‐resin‐based carbon with KOH. The effect of the KOH/carbon‐weight ratio on the textural properties and capacitive performance of the AMCs was investigated in detail. An AMC prepared with a KOH/carbon‐weight ratio of 6:1 possessed the largest specific surface area (1118 m2 g?1), with retention of the ordered mesoporous structure, and exhibited the highest specific capacitance of 260 F g?1 at a current density of 0.1 A g?1 in 1 M H2SO4 aqueous electrolyte. This material also showed excellent rate capability (163 F g?1 retained at 20 A g?1) and good long‐term electrochemical stability. This superior capacitive performance could be attributed to a large specific surface area and an optimized micro‐mesopore structure, which not only increased the effective specific surface area for charge storage but also provided a favorable pathway for efficient ion transport.  相似文献   

12.
In present work, we have prepared gels with various compositions of methyltrimethoxysilane—3-(2,3-epoxypropoxy) propyltrimethoxysilane (MTMS-GPTMS) using a two-step acid base sol–gel process. To make a comparative study between the two common drying routes, we prepared gels under supercritical and also under ambient conditions. The density of the supercritically dried hybrid aerogels lies between 0.18 and 0.31 gcm?3, while the density of the ambient dried ones ranges between 0.35 and 0.42 gcm?3. The surface area of MTMS-0.25 GPTMS aerogel dried under supercritical conditions, has been found to be 464 m2 g?1 with a pore volume and average pore diameter of 1.24 cm3 g?1 and 11 nm respectively. The same composition dried under ambient conditions is found to have similar properties i.e. a BET surface area of 439 m2 g?1, pore volume of 1.22 cm3 g?1 and average pore diameter of 11 nm. The aerogels were later pyrolyzed yielding silica/carbon composite aerogels. The pyrolized aerogels possessed a surface area as high as 207 m2 g?1 with a total pore volume of 0.98 cm3 g?1. The pyrolysed aerogels were also calcined to yield carbon free materials.  相似文献   

13.
The covalent triazine‐based framework (TDPDB) has been prepared by Friedel‐Crafts polymerization reaction of N,N′‐diphenyl‐N,N′‐di(m‐tolyl)benzidine (DPDB) with 2,4,6‐trichloro‐1,3,5‐triazine (TCT) catalyzed by methanesulfonic acid. The yield of the reaction (94.85%) is very high. TDPDB was provided with Brunauer‐Emmett‐Teller specific surface area of 592.18 m2 g?1 and pore volume of 0.5241 cm3 g?1. TDPDB demonstrated an excellent capacity for capturing iodine (3.93 g g?1) and an outstanding ability to fluorescent sensing to iodine with Ksv of 5.83 × 104 L mol?1. It also showed high fluorescent sensing sensitivity to picric acid.  相似文献   

14.
Porous nitrogen‐doped carbon nanotubes (PNCNTs) with a high specific surface area (1765 m2 g?1) and a large pore volume (1.28 cm3 g?1) have been synthesized from a tubular polypyrrole (T‐PPY). The inner diameter and wall thickness of the PNCNTs are about 55 nm and 22 nm, respectively. This material shows extremely promising properties for both supercapacitors and for encapsulating sulfur as a superior cathode material for high‐performance lithium–sulfur (Li‐S) batteries. At a current density of 0.5 A g?1, PNCNT presents a high specific capacitance of 210 F g?1, as well as excellent cycling stability at a current density of 2 A g?1. When the S/PNCNT composite was tested as the cathode material for Li‐S batteries, the initial discharge capacity was 1341 mAh g?1 at a current rate of 1 C and, even after 50 cycles at the same rate, the high reversible capacity was retained at 933 mAh g?1. The promising electrochemical energy‐storage performance of the PNCNTs can be attributed to their excellent conductivity, large surface area, nitrogen doping, and unique pore‐size distribution.  相似文献   

15.
In this work, hybrid porous Co3O4–CeO2 hollow polyhedrons have been successfully obtained via a simple cation‐exchange route followed by heat treatment. In the synthesis process, ZIF‐67 polyhedron frameworks are firstly prepared, which not only serve as a host for the exchanged Ce3+ ions but also act as the template for the synthesis of hybrid porous Co3O4–CeO2 hollow polyhedrons. When utilized as electrode materials for supercapacitors, the hybrid porous Co3O4–CeO2 hollow polyhedrons delivered a large specific capacitance of 1288.3 F g?1 at 2.5 A g?1 and a remarkable long lifespan cycling stability (<3.3 % loss after 6000 cycles). Furthermore, an asymmetric supercapacitor (ASC) device based on hybrid porous Co3O4–CeO2 hollow polyhedrons was assembled. The ASC device possesses an energy density of 54.9 W h kg?1, which can be retained to 44.2 W h kg?1 even at a power density of 5100 W kg?1, indicating its promising application in electrochemical energy storage. More importantly, we believe that the present route is a simple and versatile strategy for the preparation of other hybrid metal oxides with desired structures, chemical compositions and applications.  相似文献   

16.
Sustainable carbon materials have received particular attention in CO2 capture and storage owing to their abundant pore structures and controllable pore parameters. Here, we report high‐surface‐area hierarchically porous N‐doped carbon microflowers, which were assembled from porous nanosheets by a three‐step route: soft‐template‐assisted self‐assembly, thermal decomposition, and KOH activation. The hydrazine hydrate used in our experiment serves as not only a nitrogen source, but also a structure‐directing agent. The activation process was carried out under low (KOH/carbon=2), mild (KOH/carbon=4) and severe (KOH/carbon=6) activation conditions. The mild activated N‐doped carbon microflowers (A‐NCF‐4) have a hierarchically porous structure, high specific surface area (2309 m2 g?1), desirable micropore size below 1 nm, and importantly large micropore volume (0.95 cm3 g?1). The remarkably high CO2 adsorption capacities of 6.52 and 19.32 mmol g?1 were achieved with this sample at 0 °C (273 K) and two pressures, 1 bar and 20 bar, respectively. Furthermore, this sample also exhibits excellent stability during cyclic operations and good separation selectivity for CO2 over N2.  相似文献   

17.
Biomass‐derived porous carbon BPC‐700, incorporating micropores and small mesopores, was prepared through pyrolysis of banana peel followed by activation with KOH. A high specific BET surface area (2741 m2 g?1), large specific pore volume (1.23 cm3 g?1), and well‐controlled pore size distribution (0.6–5.0 nm) were obtained and up to 65 wt % sulfur content could be loaded into the pores of the BPC‐700 sample. When the resultant C/S composite, BPC‐700‐S65, was used as the cathode of a Li–S battery, a large initial discharge capacity (ca. 1200 mAh g?1) was obtained, indicating a good sulfur utilization rate. An excellent discharge capacity (590 mAh g?1) was also achieved for BPC‐700‐S65 at the high current rate of 4 C (12.72 mA cm?2), showing its extremely high rate capability. A reversible capacity of about 570 mAh g?1 was achieved for BPC‐700‐S65 after 500 cycles at 1 C (3.18 mA cm?2), indicating an outstanding cycling stability.  相似文献   

18.
Here, carbon nanotube@N‐doped mesoporous carbon (CNT@N‐PC) composites were synthesized by using resorcinol‐formaldehyde resin as carbon source, ionic liquids (ILs) as template, and nitrogen sources and tetraethyl orthosilicate (TEOS) as assistant agent. The use of ILs‐modified CNT with nitrogen and TEOS facilitated the generation of a richer mesoporous structure. The obtained CNT@N‐PC was composed of a CNT core and mesoporous carbon particles around it. CNT@N‐PC showed a 3D network structure like “dewy cobwebs” and had a high surface area of 857 m2 g?1, uniform pore size distribution (3.0 nm), and suitable N content (4.9 at.%). When used as supercapacitor electrode, the CNT@N‐PC exhibited a high specific capacitance (244 F g?1 at 1 A g?1), good rate capability and favorable capacitance retention (92.5 % capacitive retention after 5000 cycles), demonstrating the potential for application in high‐performance supercapacitors.  相似文献   

19.
For the first time, hierarchically porous carbon materials with a sandwich‐like structure are synthesized through a facile and efficient tri‐template approach. The hierarchically porous microstructures consist of abundant macropores and numerous micropores embedded into the crosslinked mesoporous walls. As a result, the obtained carbon material with a unique sandwich‐like structure has a relatively high specific surface (1235 m2 g?1), large pore volume (1.30 cm3 g?1), and appropriate pore size distribution. These merits lead to a comparably high specific capacitance of 274.8 F g?1 at 0.2 A g?1 and satisfying rate performance (87.7 % retention from 1 to 20 A g?1). More importantly, the symmetric supercapacitor with two identical as‐prepared carbon samples shows a superior energy density of 18.47 Wh kg?1 at a power density of 179.9 W kg?1. The asymmetric supercapacitor based on as‐obtained carbon sample and its composite with manganese dioxide (MnO2) can reach up to an energy density of 25.93 Wh kg?1 at a power density of 199.9 W kg?1. Therefore, these unique carbon material open a promising prospect for future development and utilization in the field of energy storage.  相似文献   

20.
While great progress has been achieved in the synthesis of ordered mesoporous carbons in the past decade, it still remains a challenge to prepare highly graphitic frameworks with ordered mesoporosity and high surface area. Reported herein is a simple synthetic methodology, based on the conversion of self‐assembled superlattices of Fe3O4 nanocrystals, to fabricate highly ordered mesoporous graphene frameworks (MGFs) with ultrathin pore walls consisting of three to six stacking graphene layers. The MGFs possess face‐centered‐cubic symmetry with interconnected mesoporosity, tunable pore width, and high surface area. Because of their unique architectures and superior structural durability, the MGFs exhibit excellent cycling stability and rate performance when used as anode materials for lithium‐ion batteries, thus retaining a specific capacity of 520 mAh g?1 at a current density of 300 mA g?1 after 400 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号