首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a facile dialysis nanoprecipitation method, nanoparticles of several hundred nanometers have been successfully generated from a “traditional,” non‐biodegradable polymer, that is, polystyrene. The effect of initial polymer concentration inside the dialysis membrane, as well as the polymer/solvent system and the ionic strength (electrolyte concentration) of the dialysis solution, on nanoparticle size is examined. A nucleation‐aggregation mechanism has been provided to explain the observed trends. Furthermore, we determine the zeta potential as a function of ionic strength for the generated nanoparticles and show that anionic charging may be present in the system.  相似文献   

2.
Understanding drug-release kinetics is critical for the development of drug-loaded nanoparticles. We developed a J-aggregate-based Förster-resonance energy-transfer (FRET) method to investigate the release of novel high-drug-loading (50 wt %) nanoparticles in comparison with low-drug-loading (0.5 wt %) nanoparticles. Single-dye-loaded nanoparticles form J-aggregates because of the high dye-loading (50 wt %), resulting in a large red-shift (≈110 nm) in the fluorescence spectrum. Dual-dye-loaded nanoparticles with high dye-loading using FRET pairs exhibited not only FRET but also a J-aggregate red-shift (116 nm). Using this J-aggregate-based FRET method, dye-core–polymer-shell nanoparticles showed two release processes intracellularly: the dissolution of the dye aggregates into dye molecules and the release of the dye molecules from the polymer shell. Also, the high-dye-loading nanoparticles (50 wt %) exhibited a slow release kinetics in serum and relatively quick release in cells, demonstrating their great potential in drug delivery.  相似文献   

3.
An optimum nanoprecipitation technique for gelatin nanoparticles is established, based on aqueous gelatin solution and ethanolic solution containing stabilizer. Crosslinking with glutaraldehyde results in stable gelatine nanoparticles. Several factors such as the surfactant concentration, type of surfactant, type of nonsolvent and gelatin concentration are evaluated. Gelatin nanoparticles with 200–300 nm can be produced using 20–30 mg mL?1 of gelatin and a minimum of 7% w/v stabilizer (Poloxamer 407 or 188). Furthermore, methanol and ethanol are good nonsolvents, whereas other nonsolvents such as acetone, isopropyl alcohol, and acetonitrile, result in phase separation and visible precipitates. The entrapment efficiency of fluorescein‐isothiocyanate (FITC)‐dextran as model drug was determined to 50% with no substantial effect on particle size. 80% of the drug is only released after enzymatic digestion.

  相似文献   


4.
Lignin nanomaterials have wide application prospects in the fields of cosmetics delivery, energy storage, and environmental governance. In this study, we developed a simple and sustainable synthesis approach to produce uniform lignin nanoparticles (LNPs) by dissolving industrial lignin in deep eutectic solvents (DESs) followed by a self-assembling process. LNPs with high yield could be obtained through nanoprecipitation. The LNPs were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and gel permeation chromatography (GPC). Distinct LNPs could be produced by changing the type of DES, lignin sources, pre-dropping lignin concentration, and the pH of the system. Their diameter is in the range of 20–200 nm and they show excellent dispersibility and superior long-term stability. The method of preparing LNPs from lignin–DES with water as an anti-solvent is simple, rapid, and environmentally friendly. The outcome aids to further the advancement of lignin-based nanotechnology.  相似文献   

5.
Polymer nanoparticles are readily obtainable by rapidly mixing a dilute polymer solution and a poor solvent. The nanoparticles of poly(vinylphenol), poly(vinylidene fluoride), and emeraldine base polyaniline prepared by nanoprecipitation become sticky when their diameters decrease down to a few tens of nanometers, and such polymer nanoparticles spontaneously assemble into rigid fractal networks of the nanoparticles. By filtering these fibrous nanoparticle networks on a microfiltration membrane, ultrafiltration membranes with a thin free‐standing filter cake layer made of nanoparticles are obtainable. The nanoparticle membranes are robust at least up to the applied pressure of 2 MPa and can separate 99% of 10 nm Au nanoparticles from the aqueous dispersion at the flux of more than 1835 L m?2 h?1 even at very low pressure difference of 0.08 MPa. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 615–620  相似文献   

6.
An amino‐acid‐based hydrophobically modified biocompatible copolymer, poly[(sodium N‐acryloyl‐L ‐valinate)‐co‐(N‐octylacrylamide)] was synthesized and characterized. Techniques such as fluorescence probes, DLS, and TEM were used to investigate its aggregation behavior in aqueous solution. The copolymer was observed to form micellar aggregates having diameters in the nanometer range in aqueous solution (pH = 8) through inter‐chain hydrophobic association. This behavior was found to be similar to that of poly[(sodium N‐acryloyl‐L ‐valinate)‐co‐(N‐dodecylacrylamide)]. The compact micellar nanostructures were observed to be stable with respect to changes of pH and temperature. The encapsulation and release of griseofulvin, a hydrophobic model drug, was studied.

  相似文献   


7.
Carriers that can afford tunable physical and structural changes are envisioned to address critical issues in controlled drug delivery applications. Herein, photo‐responsive conjugated polymer nanoparticles (CPNs) functionalized with donor–acceptor Stenhouse adduct (DASA) and folic acid units for controlled drug delivery and imaging are reported. Upon visible‐light (λ=550 nm) irradiation, CPNs simultaneously undergo structure, color, and polarity changes that release encapsulated drugs into the cells. The backbone of CPNs favors FRET to DASA units boosting their fluorescence. Notably, drug‐loaded CPNs exhibit excellent biocompatibility in the dark, indicating perfect control of the light trigger over drug release. Delivery of both hydrophilic and hydrophobic drugs with good loading efficiency was demonstrated. This strategy enables remotely controlled drug delivery with visible‐light irradiation, which sets an example for designing delivery vehicles for non‐invasive therapeutics.  相似文献   

8.
本文综述了智能聚合物包覆的金纳米粒子的研究进展,重点介绍了智能聚合物包覆金纳米粒子的制备方法,包括原位合成法、配体置换法、表面引发聚合法和表面接枝聚合法等,以及智能聚合物包覆的金纳米粒子的智能响应类型,如温度敏感型、pH敏感型、pH/电解质双重敏感型、pH/温度双重敏感型、溶剂敏感型等。  相似文献   

9.
用高分子保护的纳米MgO的合成   总被引:27,自引:0,他引:27  
本文利用高分子表面保护的化学沉淀方法成功地制备了粒径分布均匀的类球型纳米MgO。并对所制得的纳米粒子采用红外光谱(IR)、透射电镜(TEM)、差热及热重分析(TG-DTA)和X射线衍射(XRD)等现代分析测试手段进行了表面形貌、结构、晶形和组成等的表征。结果表明利用高分子的表面保护作用能够控制纳米微粒的形状和大小;由于聚乙烯醇分子中多羟基与金属离子间强的相互作用,因此获得的纳米微粒径更小,分散性更好。  相似文献   

10.
11.
A hybrid hydrogel composed of solid lipid nanoparticles (LNPs) entrapped within chemically cross‐linked carboxymethylcellulose (CMC) is developed to achieve localized and sustained release of lipophilic drugs. The analysis of LNP stability as well as the hydrogel swelling and mechanical properties confirm the successful incorporation of particles up to a concentration of 50% w/wCMC. The initial LNP release rate can be prolonged by increasing the particle diameter from 50 to 120 nm, while the amount of long‐term release can be adjusted by tailoring the particle surface charge or the cross‐linking density of the polymer. After 30 d, 58% of 50 nm diameter negatively charged LNPs escape from the matrix while only 17% of positively charged nanoparticles are released from materials with intermediate cross‐linking density. A mathematical diffusion model based on Fick's second law is efficient to predict the diffusion of the particles from the hydrogels.  相似文献   

12.
聚合物纳米粒子用于给药载体   总被引:10,自引:0,他引:10  
聚合物纳米粒子用于给药载体具有广阔的前景,本文按聚合物纳米粒子的主要制备方法(单体聚合法,聚合物后分散法和两亲性聚合物自组装法等)综述了它近十年来在药物靶向输送上的应用研究进展。  相似文献   

13.
Dye‐loaded polymer nanoparticles (NPs) emerge as a powerful tool for bioimaging applications, owing to their exceptional brightness and controlled small size. However, aggregation‐caused quenching (ACQ) and leakage of dyes at high loading remain important challenges of these nanomaterials. The use of bulky hydrophobic counterions has been recently proposed as an effective approach to minimize ACQ and dye leakage, but the role of counterion structure is still poorly understood. Here, a systematic study based on ten counterions, ranging from small hydrophilic perchlorate up to large hydrophobic tetraphenylborate derivatives, reveals how counterion nature can control encapsulation and emission of a cationic dye (rhodamine B octadecyl ester) in NPs prepared by nanoprecipitation of a biodegradable polymer, poly‐lactide‐co‐glycolide (PLGA). We found that increase in counterion hydrophobicity enhances dye encapsulation efficiency and prevents dye adsorption at the particle surface. Cellular imaging studies revealed that ≥95 % encapsulation efficiency, achieved with most hydrophobic counterions (fluorinated tetraphenylborates), is absolutely required because non‐encapsulated dye species at the surface of NPs are the origin of dye leakage and strong fluorescence background in cells. The size of counterions is found to be essential to prevent ACQ, where the largest species, serving as effective spacer between dyes, provide the highest fluorescence quantum yield. Moreover, we found that the most hydrophobic counterions favor dye–dye coupling inside NPs, leading to ON/OFF fluorescence switching of single particles. By contrast, less hydrophobic counterions tend to disperse dyes in the polymer matrix favoring stable emission of NPs. The obtained structure‐property relationships validate the counterion‐based approach as a mature concept to fight ACQ and dye leakage in the development of advanced polymeric nanomaterials with controlled optical properties.  相似文献   

14.
以多功能水溶性聚合物配体制备的纳米颗粒具有小尺寸、单分散、生物相容性良好的特点,同时还具备近红外荧光、超顺磁性等特殊物理性质,弥补了传统方法制备纳米颗粒的缺陷。本文综述了近年来多功能水溶性聚合物配体制备贵金属纳米颗粒、磁性纳米颗粒、纳米量子点以及复合结构纳米颗粒的进展;阐述了多功能水溶性聚合物配体在制备纳米颗粒方面的优势;分析了多功能水溶性聚合物的结构、分子量、浓度等因素对制备纳米颗粒的影响。最后,探讨了小尺寸、单分散、水溶性的纳米颗粒在配体交换、药物靶向传输体系、疾病检测、生物标签、核磁共振成像以及光电学等领域的应用,并展望了多功能水溶性聚合物配体制备纳米颗粒的研究方向。  相似文献   

15.
简要介绍了合成智能高分子材料、半合成智能高分子材料和天然智能高分子材料在智能给药系统中的应用研究进展,并展望了其在智能给药系统中的应用前景。  相似文献   

16.
智能高分子材料在智能给药系统中的应用   总被引:1,自引:0,他引:1  
戴亚妮  李平  王爱勤 《化学进展》2007,19(2):362-369
简要介绍了合成智能高分子材料、半合成智能高分子材料和天然智能高分子材料在智能给药系统中的应用研究进展,并展望了其在智能给药系统中的应用前景.  相似文献   

17.
Fluorescence tunable polymer nanoparticles were prepared by incorporating two hydrophobic fluorescent dyes (9, 10-diphenylanthracene: DPA and nitrobenzoxadiazolyl: NBD) into polymethylmethacrylate (PMMA) nanoparticles via one-step mini-emulsion polymerization method. The prepared fluorescent nanoparticles exhibit the spectral properties of both DPA and NBD dye, indicating that the two fluorophores have been incorporated into the nanoparticles. The nanoparticles greatly enhance the fluorescence emission of the two hydrophobic dyes in aqueous media probably by providing good protection of the dye molecules in the polymer nanoparticles matrix. Moreover, by varying the doping ratio of the two hydrophobic dyes, the polymer nanoparticles exhibit tunable and distinguishable emission characteristics under a single wavelength excitation via occuring fluorescence resonance energy transfer (FRET).  相似文献   

18.
Surface modifications of nanoparticles with phospholipid polymers composed of 2-methacryloyloxyethyl phosphorylcholine (MPC), are summarized. The MPC can be available for various polymerization methods such as conventional radical polymerization and living radical polymerization, and easily copolymerized with other vinyl compounds. The MPC polymers have been widely used as biocompatible coating and stabilizer for nanoparticles even when they are under biological environment. Additionally, for immobilization of biomolecules, such as antibody and enzyme, the MPC polymers having active ester group are applicable. These MPC polymers coated on the nanoparticles immobilize protein under mild condition and the protein maintained bioactivity well. Moreover, introduction of functional inorganic nanocrystals inside of the nanoparticles is effective to obtain good imaging tool for specific cells. The potential of molecular integration on nanoparticles based on MPC polymer chemistry will be expanded nanobiosensing, nanoimaging and nanodiagnostic system.  相似文献   

19.
利用聚氧乙烯硬脂酸酯(Brij78)和帕米膦酸二钠制备新型表面活性剂Pa-Brij78,以此为表面活性剂,聚乳酸-羟基乙酸共聚物(poly(lactic-co-glycolic acid),PLGA)为油相,采用水包油包水的微乳液法制备载卵清蛋白(ovalbumin,OVA)的表面带有磷酸根的PLGA纳米粒,再用共沉淀法在其表面修饰一层磷酸钙,并装载寡核苷酸Cp G,形成一种核-壳结构的复合载药纳米粒Cp G/Ca P/PLGA(OVA).通过动态光散射粒度仪、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)对纳米粒进行表征,并测定OVA、Cp G的载药量、包封率.结果表明以Pa-Brij78为表面活性剂制备的PLGA(OVA)纳米粒确实能被磷酸钙修饰,粒径增大40~60 nm,表面变粗糙,XRD测得该磷酸钙层的主要存在形式为Ca3(PO4)2.OVA平均载药量为5%,包封率大于80%;Cp G平均载药量为0.47%,平均包封率为89.9%.  相似文献   

20.
Biocompatible nanoparticles (NPs) of hydrophobic poly(benzyl malate) (PMLABe) were prepared by nanoprecipitation. The influence of nanoprecipitation parameters (initial PMLABe, addition rate, organic solvent/water ratio and stirring speed) were studied to optimize the resulting formulations in terms of hydrodynamic diameter (Dh) and dispersity (PDI). PMLABe NPs with a Dh of 160 nm and a PDI of 0.11 were isolated using the optimized nanoprecipitation conditions. A hydrophobic near infra-red (NIR) photothermally active nickel-bis(dithiolene) complex (Ni8C12) was then encapsulated into PMLABe NPs using the optimized nanoprecipitation conditions. The size and encapsulation efficiency of the NPs were measured, revealing that up to 50 weight percent (wt%) of Ni8C12 complex can efficiently be encapsulated with a slight increase in Dh of the corresponding Ni8C12-loaded NPs. Moreover, we have shown that NP encapsulating Ni8C12 were stable under storage conditions (4 °C) for at least 10 days. Finally, the photothermal properties of Ni8C12-loaded NPs were evaluated and a high photothermal efficiency (62.7 ± 6.0%) waswas measured with NPs incorporating 10 wt% of the Ni8C12 complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号