The quinoidal versus biradicaloid character of the ground state of a series of thiophene‐based heterophenoquinones is investigated with quantum‐chemical calculations. The role of the ground‐state electronic character on molecular structure and vibrational properties is emphasized. The vibrational activities are experimentally determined and their analysis is performed by taking advantage of the definition of a collective vibrational coordinate (the
We employ low‐temperature single‐molecule spectroscopy combined with pattern recognition techniques for data analysis on a methyl‐substituted ladder‐type poly(para‐phenylene) (MeLPPP) to investigate the electron–phonon coupling to low‐energy vibrational modes as well as the origin of the strong spectral diffusion processes observed for this conjugated polymer. The results indicate weak electron–phonon coupling to low‐frequency vibrations of the surrounding matrix of the chromophores, and that low‐energy intrachain vibrations of the conjugated backbone do not couple to the electronic transitions of MeLPPP at low temperatures. Furthermore, these findings suggest that the main line‐broadening mechanism of the zero‐phonon lines of MeLPPP is fast, unresolved spectral diffusion, which arises from conformational fluctuations of the side groups attached to the MeLPPP backbone as well as of the surrounding host material.相似文献
Two‐dimensional boron sheets (borophenes) have been successfully synthesized in experiments and are expected to exhibit intriguing transport properties. A comprehensive first‐principles study is reported of the intrinsic electrical resistivity of emerging borophene structures. The resistivity is highly dependent on different polymorphs and electron densities of borophene. Interestingly, a universal behavior of the intrinsic resistivity is well‐described using the Bloch–Grüneisen model. In contrast to graphene and conventional metals, the intrinsic resistivity of borophenes can be easily tuned by adjusting carrier densities, while the Bloch–Grüneisen temperature is nearly fixed at 100 K. This work suggests that monolayer boron can serve as intriguing platform for realizing tunable two‐dimensional electronic devices. 相似文献
A series of lead‐free double perovskite nanocrystals (NCs) Cs2AgSb1?yBiyX6 (X: Br, Cl; 0≤y≤1) is synthesized. In particular, the Cs2AgSbBr6 NCs is a new double perovskite material that has not been reported for the bulk form. Mixed Ag–Sb/Bi NCs exhibit enhanced stability in colloidal solution compared to Ag–Bi or Ag–Sb NCs. Femtosecond transient absorption studies indicate the presence of two prominent fast trapping processes in the charge‐carrier relaxation. The two fast trapping processes are dominated by intrinsic self‐trapping (ca. 1–2 ps) arising from giant exciton–phonon coupling and surface‐defect trapping (ca. 50–100 ps). Slow hot‐carrier relaxation is observed at high pump fluence, and the possible mechanisms for the slow hot‐carrier relaxation are also discussed. 相似文献
A theoretical investigation on the luminescence efficiency of a series of d8 transition‐metal Schiff base complexes was undertaken. The aim was to understand the different photophysics of [M‐salen]n complexes (salen=N,N′‐bis(salicylidene)ethylenediamine; M=Pt, Pd (n=0); Au (n=+1)) in acetonitrile solutions at room temperature: [Pt‐salen] is phosphorescent and [Au‐salen]+ is fluorescent, but [Pd‐salen] is nonemissive. Based on the calculation results, it was proposed that incorporation of electron‐withdrawing groups at the 4‐position of the Schiff base ligand should widen the 3MLCT–3MC gap (MLCT=metal‐to‐ligand charge transfer and MC=metal centered, that is, the dd excited state); thus permitting phosphorescence of the corresponding PdII Schiff base complex. Although it is experimentally proven that [Pd‐salph‐4E] (salph=N,N′‐bis(salicylidene)‐1,2‐phenylenediamine; 4E means an electron‐withdrawing substituent at the 4‐position of the salicylidene) displays triplet emission, its quantum yield is low at room temperature. The corresponding PtII Schiff base complex, [Pt‐salph‐4E], is also much less emissive than the unsubstituted analogue, [Pt‐salph]. Thus, a detailed theoretical analysis of how the substituent and central metal affected the photophysics of [M‐salph‐X] (X is a substituent on the salph ligand, M=Pt or Pd) was performed. Temperature effects were also investigated. The simple energy gap law underestimated the nonradiative decay rates and was insufficient to account for the temperature dependence of the nonradiative decay rates of the complexes studied herein. On the other hand, the present analysis demonstrates that inclusions of low‐frequency modes and the associated frequency shifts are decisive in providing better quantitative estimates of the nonradiative decay rates and the experimentally observed temperature effects. Moreover, spin–orbit coupling, which is often considered only in the context of radiative decay rate, has a significant role in determining the nonradiative rate as well. 相似文献
Carbon‐doped titania (C‐TiO2) nanoparticles were synthesized by the sol–gel method at different calcination temperatures (300–600°C) employing titanium tetraisopropoxide (TTIP) as the titanium source and polyoxyethylene sorbitan monooleate (Tween 80) as the carbon source. The physical properties of C‐TiO2 samples were characterized by X‐ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic activities were checked through the photodegradation of phenolphthalein (PHP) under ultraviolet irradiation. The UV spectrum showed that the carbon doping extends the absorption range of TiO2 to the visible region. However, the photocatalytic activity is affected by the electron–hole recombination phenomenon, as revealed by the photoluminescence (PL) study. According to the PL spectra, carbon doping reduces the edge‐to‐edge electron–hole recombination. Nevertheless, the number of defect sites is greatly influenced by the calcination temperature of C‐TiO2. C‐TiO2 that was calcined at 400°C showed the highest photodegradation percentage of PHP, which was mainly attributed to the synergic effect of the low direct edge‐to‐edge electron–hole recombination, high content of defect sites, and retention of active electrons on the surface hydroxyl group. 相似文献
The perovskite CH3NH3PbI3 excited‐state lifetimes exhibit conflicting experimental results under humid environments. Using ab initio nonadiabatic (NA) molecular dynamics, we demonstrate that the interplay between lead vacancy and water can rationalize the puzzle. The lead vacancy reduces NA coupling by localizing holes, slowing electron–hole recombination. By creating a deep electron trap state, the coexistence of a neutral lead vacancy and water molecules enhances NA coupling, accelerating charge recombination by a factor of over 3. By eliminating the mid‐gap state by accepting two photoexcited electrons, the negatively charged lead vacancy interacting with water molecules increases the carrier lifetime over 2 times longer than in the pristine system. The simulations rationalize the positive and negative effects of water on the solar cell performance exposure to humidity. 相似文献
Solid state NMR spectroscopy is swiftly emerging as useful tool to characterize the structure, composition and dynamic properties of lead halide perovskites. On the other hand, interpretation of solid state NMR signatures is often challenging, because of the potential presence of many overlapping signals in small range of chemical shifts, hence complicating the extraction of detailed structural features. Here, we demonstrate the reliability of periodic Density Functional Theory in providing theoretical support for the NMR characterization of halide perovskite compounds, considering nuclei with spin I=1/2. For light 1H and 13C nuclei, we predict NMR chemical shifts in good agreement with experiment, further highlighting the effects of motional narrowing. Accurate prediction of the NMR response of 207Pb nuclei is comparably more challenging, but we successfully reproduce the downshift in frequency when changing the halide composition from pure iodine to pure bromine. Furthermore, we confirm NMR as ideal tool to study mixed halide perovskite compounds, currently at the limelight for tandem solar cells and color-tunable light emission. 相似文献
The promiscuous encapsulation of π‐electron‐rich guests by the π‐electron‐deficient host, cyclobis(paraquat‐p‐phenylene) (CBPQT4+), involves the formation of 1:1 inclusion complexes. One of the most intensely investigated charge‐transfer (CT) bands, assumed to result from inclusion of a guest molecule inside the cavity of CBPQT4+, is an emerald‐green band associated with the complexation of tetrathiafulvalene (TTF) and its derivatives. This interpretation was called into question recently in this journal based on theoretical gas‐phase calculations that reinterpreted this CT band in terms of an intermolecular side‐on interaction of TTF with one of the bipyridinium (BIPY2+) units of CBPQT4+, rather than the encapsulation of TTF inside the cavity of CBPQT4+. We carried out DFT calculations, including solvation, that reveal conclusively that the CT band emerging upon mixing TTF with CBPQT4+ arises from the formation of a 1:1 inclusion complex. In support of this conclusion, we have performed additional experiments on a [2]rotaxane in which a TTF unit, located in the middle of its short dumbbell, is prevented sterically from interacting with either one of the two BIPY2+ units of a CBPQT4+ ring residing on a separate [2]rotaxane in a side‐on fashion. This [2]rotaxane has similar UV/Vis and 1H NMR spectroscopic properties with those of 1:1 inclusion complexes of TTF and its derivatives with CBPQT4+. The [2]rotaxane exists as an equimolar mixture of cis‐ and trans‐isomers associated with the disubstituted TTF unit in its dumbbell component. Solid‐state structures were obtained for both isomers, validating the conclusion that the TTF unit, which gives rise to the CT band, resides inside CBPQT4+. 相似文献
The [5+2] and [6+2] cycloaddition reactions of vinylaziridines and vinylazetidines with ketenes generated photochemically from chromium(0) and molybdenum(0) Fischer carbene complexes have been investigated. These processes constitute a straightforward and efficient route to azepanones and azocinones, respectively. The peculiar electronic properties of the metalated ketenes allow for the introduction of electron‐rich substituents in the final cycloadducts, a difficult task using conventional organic chemistry procedures. The versatility of the process is demonstrated by using Cr0 Fischer bis(carbene) complexes as metalated bis(ketene) precursors. These species produce tethered bis(azepanone)s in a single step under mild reaction conditions. Density functional theory calculations point to a stepwise reaction pathway through the initial nucleophilic attack of the nitrogen atom of the aziridine on the metalated ketene, followed by ring closure of the zwitterionic intermediate formed. 相似文献
The dinuclear Pt–Au complex [(CNC)(PPh3)Pt Au(PPh3)](ClO4) ( 2 ) (CNC=2,6‐diphenylpyridinate) was prepared. Its crystal structure shows a rare metal–metal bonding situation, with very short Pt–Au and Au–Cipso(CNC) distances and dissimilar Pt–Cipso(CNC) bonds. Multinuclear NMR spectra of 2 show the persistence of the Pt–Au bond in solution and the occurrence of unusual fluxional behavior involving the [PtII] and [AuI] metal fragments. The [PtII]??? [AuI] interaction has been thoroughly studied by means of DFT calculations. The observed bonding situation in 2 can be regarded as a model for an intermediate in a transmetalation process. 相似文献