首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flexible zinc–air batteries (ZAB) are a promising battery candidate for emerging flexible electronic devices, but the catalysis-based working principle and unique semi-opened structure pose a severe challenge to their overall performance at cold temperature. Herein, we report the first flexible rechargeable ZAB with excellent low-temperature adaptability, based on the innovation of an efficient electrocatalyst to offset the electrochemical performance shrinkage caused by decreased temperature and a highly conductive hydrogel with a polarized terminal group to render the anti-freezing property. The fabricated ZABs show excellent electrochemical performances that outperform those of many aqueous ZABs at room temperature. They also deliver a high capacity of 691 mAh g−1 and an energy density of 798 Wh kg−1 at −20 °C (92.7 % and 87.2 % retention of the room temperature counterparts, respectively), together with excellent flexibility and reverting capability.  相似文献   

2.
We report a supramolecular strategy to prepare conductive hydrogels with outstanding mechanical and electrochemical properties, which are utilized for flexible solid‐state supercapacitors (SCs) with high performance. The supramolecular assembly of polyaniline and polyvinyl alcohol through dynamic boronate bond yields the polyaniline–polyvinyl alcohol hydrogel (PPH), which shows remarkable tensile strength (5.3 MPa) and electrochemical capacitance (928 F g?1). The flexible solid‐state supercapacitor based on PPH provides a large capacitance (306 mF cm?2 and 153 F g?1) and a high energy density of 13.6 Wh kg?1, superior to other flexible supercapacitors. The robustness of the PPH‐based supercapacitor is demonstrated by the 100 % capacitance retention after 1000 mechanical folding cycles, and the 90 % capacitance retention after 1000 galvanostatic charge–discharge cycles. The high activity and robustness enable the PPH‐based supercapacitor as a promising power device for flexible electronics.  相似文献   

3.
近年来,人们越来越关注柔性可穿戴电子设备。柔性锌-空气电池由于有较高的理论能量密度以及对像人体一样不均匀表面的适应能力,有望成为下一代电子产品的电源。在柔性锌-空气电池研究领域,人们已经取得了较好的研究进展,各种柔性锌-空气电池的制备方法已被报道。本文阐述了近年来柔性锌-空气电池的主要成就以及面临的困难,特别是关注凝胶电解质、金属阳极以及柔性空气阴极对柔性锌-空气电池电化学性能的影响,最后讨论了柔性锌-空气电池面临的主要挑战与发展前景。  相似文献   

4.
Carbon nanomaterials, especially graphene and carbon nanotubes, are considered to be favorable alternatives to graphite‐based anodes in lithium‐ion batteries, owing to their high specific surface area, electrical conductivity, and excellent mechanical flexibility. However, the limited number of storage sites for lithium ions within the sp2‐carbon hexahedrons leads to the low storage capacity. Thus, rational structure design is essential for the preparation of high‐performance carbon‐based anode materials. Herein, we employed flexible single‐walled carbon nanotubes (SWCNTs) with ultrahigh electrical conductivity as a wrapper for 3D graphene foam (GF) by using a facile dip‐coating process to form a binary network structure. This structure, which offered high electrical conductivity, enlarged the electrode/electrolyte contact area, shortened the electron‐/ion‐transport pathways, and allowed for efficient utilization of the active material, which led to improved electrochemical performance. When used as an anode in lithium‐ion batteries, the SWCNT‐GF electrode delivered a specific capacity of 953 mA h g?1 at a current density of 0.1 A g?1 and a high reversible capacity of 606 mA h g?1 after 1000 cycles, with a capacity retention of 90 % over 1000 cycles at 1 A g?1 and 189 mA h g?1 after 2200 cycles at 5 A g?1.  相似文献   

5.
SiO2/polyvinylidene fluoride (PVDF) composite nanofiber‐coated polypropylene (PP) nonwoven membranes were prepared by electrospinning of SiO2/PVDF dispersions onto both sides of PP nonwovens. The goal of this study was to combine the good mechanical strength of PP nonwoven with the excellent electrochemical properties of SiO2/PVDF composite nanofibers to obtain a new high‐performance separator. It was found that the addition of SiO2 nanoparticles played an important role in improving the overall performance of these nanofiber‐coated nonwoven membranes. Among the membranes with various SiO2 contents, 15% SiO2/PVDF composite nanofiber‐coated PP nonwoven membranes provided the highest ionic conductivity of 2.6 × 10?3 S cm?1 after being immersed in a liquid electrolyte, 1 mol L?1 lithium hexafluorophosphate in ethylene carbonate, dimethyl carbonate and diethyl carbonate. Compared with pure PVDF nanofiber‐coated PP nonwoven membranes, SiO2/PVDF composite fiber‐coated PP nonwoven membranes had greater liquid electrolyte uptake, higher electrochemical oxidation limit, and lower interfacial resistance with lithium. SiO2/PVDF composite fiber‐coated PP nonwoven membrane separators were assembled into lithium/lithium iron phosphate cells and demonstrated high cell capacities and good cycling performance at room temperature. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1719–1726  相似文献   

6.
A core‐shell NiAlO@polypyrrole composite (NiAlO@PPy) with a 3D “sand rose”‐like morphology was prepared via a facile in situ oxidative polymerization of pyrrole monomer, where the role of PPy coating thickness was investigated for high‐performance supercapacitors. Microstructure analyses indicated that the PPy was successfully coated onto the NiAlO surface to form a core‐shell structure. The NiAlO@PPy exhibited a better electrochemical performance than pure NiAlO, and the moderate thickness of the PPy shell layer was beneficial for expediting the electron transfer in the redox reaction. It was found that the NiAlO@PPy5 prepared at 5.0 mL L?1 addition amount of pyrrole monomer demonstrated the best electrochemical performance with a high specific capacitance of 883.2 F g?1 at a current density of 1 A g?1 and excellent capacitance retention of 91.82 % of its initial capacitance after 1000 cycles at 3 A g?1. The outstanding electrochemical performance of NiAlO@PPy5 were due to the synergistic effect of NiAlO and PPy, where the uniform network‐like PPy shell with the optimal thickness made electrolyte ions more easily accessible for faradic reactions. This work provided a simple approach for designing organic–inorganic core‐shell materials as high‐performance electrode materials for electrochemical supercapacitors.  相似文献   

7.
A 3D flower‐like mesoporous Ni@C composite material has been synthesized by using a facile and economical one‐pot hydrothermal method. This unique 3D flower‐like Ni@C composite, which exhibited a high surface area (522.4 m2 g?1), consisted of highly dispersed Ni nanoparticles on mesoporous carbon flakes. The effect of calcination temperature on the electrochemical performance of the Ni@C composite was systematically investigated. The optimized material (Ni@C 700) displayed high specific capacity (1306 F g?1 at 2 A g?1) and excellent cycling performance (96.7 % retention after 5000 cycles). Furthermore, an asymmetric supercapacitor (ASC) that contained Ni@C 700 as cathode and mesoporous carbon (MC) as anode demonstrated high energy density (60.4 W h kg?1 at a power density of 750 W kg?1).  相似文献   

8.
Sodium‐ion batteries (SIBs) based on flexible electrode materials are being investigated recently for improving sluggish kinetics and developing energy density. Transition metal selenides present excellent conductivity and high capacity; nevertheless, their low conductivity and serious volume expansion raise challenging issues of inferior lifespan and capacity fading. Herein, an in‐situ construction method through carbonization and selenide synergistic effect is skillfully designed to synthesize a flexible electrode of bone‐like CoSe2 nano‐thorn coated on porous carbon cloth. The designed flexible CoSe2 electrode with stable structural feature displays enhanced Na‐ion storage capabilities with good rate performance and outstanding cycling stability. As expected, the designed SIBs with flexible BL?CoSe2/PCC electrode display excellent reversible capacity with 360.7 mAh g?1 after 180 cycles at a current density of 0.1 A g?1.  相似文献   

9.
In this study, a method is developed to fabricate Fe3O4@C particles with a coaxial and penetrated hollow mesochannel based on the concept of “confined nanospace pyrolysis”. The synthesis involves the production of a polydopamine coating followed by a silica coating on a rod‐shaped β‐FeOOH nanoparticle, and subsequent treatment by using confined nanospace pyrolysis and silica removal procedures. Typical coaxial hollow Fe3O4@C possesses a rice‐grain morphology and mesoporous structure with a large specific surface area, as well as a continuous and flexible carbon shell. Electrochemical tests reveal that the hollow Fe3O4@C with an open‐ended nanostructure delivers a high specific capacity (ca. 864 mA h g?1 at 1 A g?1), excellent rate capability with a capacity of about 582 mA h g?1 at 2 A g?1, and a high Coulombic efficiency (>97 %). The excellent electrochemical performance benefits from the hollow cavity with an inner diameter of 18 nm and a flexible carbon shell that can accommodate the volume change of the Fe3O4 during the lithium insertion/extraction processes as well as the large specific surface area and open inner cavity to facilitate the rapid diffusion of lithium ions from electrolyte to active material. This fabrication strategy can be used to generate a hollow or porous metal oxide structure for high‐performance Li‐ion batteries.  相似文献   

10.
The storage time of Zn-air batteries (ZABs) for practical implementation have been neglected long-lastingly. ZABs based on organic solvents promise long shelf lives but suffer from sluggish kinetics. Here, we report a longly storable ZAB with accelerated kinetics mediated by I3/I redox. In the charge process, the electrooxidation of Zn5(OH)8Cl2⋅H2O is accelerated by I3 chemical oxidation. In the discharge process, I adsorbed on the electrocatalyst changes the energy level of oxygen reduction reaction (ORR). Benefitting from these advantages, the prepared ZAB shows remarkably improved round-trip efficiency (56.03 % vs. 30.97 % without the mediator), and long-term cycling time (>2600 h) in ambient air without replacing any components or applying any protective treatment to Zn anode and electrocatalyst. After resting for 30 days without any protection, it can still directly discharge continuously for 32.5 h and charge/discharge very stably for 2200 h (440 cycles), which is evidently superior to aqueous ZABs (only 0/0.25 h, and 50/25 h (10/5 cycles) by mild/alkaline electrolyte replenishment). This study provides a strategy to solve both storage and sluggish kinetics issues that have been plaguing ZABs for centuries, opening up a new avenue to the industrial application of ZABs.  相似文献   

11.
Heteroatom doping is an effective method to adjust the electrochemical behavior of carbonaceous materials. In this work, boron‐doped, carbon‐coated SnO2/graphene hybrids (BCTGs) were fabricated by hydrothermal carbonization of sucrose in the presence of SnO2/graphene nanosheets and phenylboronic acid or boric acid as dopant source and subsequent thermal treatment. Owing to their unique 2D core–shell architecture and B‐doped carbon shells, BCTGs have enhanced conductivity and extra active sites for lithium storage. With phenylboronic acid as B source, the resulting hybrid shows outstanding electrochemical performance as the anode in lithium‐ion batteries with a highly stable capacity of 1165 mA h g?1 at 0.1 A g?1 after 360 cycles and an excellent rate capability of 600 mA h g?1 at 3.2 A g?1, and thus outperforms most of the previously reported SnO2‐based anode materials.  相似文献   

12.
Pumpkin has been employed for the first time as a renewable, low‐cost precursor for the preparation of porous carbon materials with excellent performance. Unlike most other precursors, pumpkin is rich in sugars and starch, and it has advantageous properties for large‐scale production. The as‐prepared materials adopted a unique morphology that consisted of numerous fused sphere‐like carbon grains with a high specific surface area (2968 m2 g?1), abundant micro and mesopores, and excellent electrochemical properties. The pumpkin‐derived activated carbon (PAC) material not only exhibited a high specific capacitance of 419 F g?1, but also showed considerable cycling stability, with 93.6 % retention after 10 000 cycles. Moreover, a symmetrical supercapacitor that was based on PAC showed a high energy density of 22.1 W h kg?1 in aqueous electrolyte. These superior properties demonstrate that PAC holds great promise for applications in electrochemical energy‐storage devices.  相似文献   

13.
《中国化学快报》2023,34(10):108142
Fe-NX/C electrocatalysts have aroused extensive interest in accelerating sluggish oxygen reduction reaction (ORR) kinetics as potential alternatives to platinum catalysts in rechargeable Zn-air batteries (ZABs). However, the low density and poor accessibility of Fe-NX sites have severely restricted the electrocatalytic performance of Fe-NX/C. Herein, Fe, N co-doped ordered mesoporous carbon fiber bundles are prepared through a ligand-assisted strategy with nitrogen-rich 1,10-phenanthroline as space isolation agent. 1,10-Phenanthroline reveals a six-membered heterocyclic structure containing abundant nitrogen species to tightly coordinate with Fe ions, which is conducive to achieving high-density Fe-NX sites. Meanwhile, the adoption of SBA-15 as hard-templates enables the catalysts with highly ordered channels and large specific surface areas, improving the accessibility of Fe-NX sites. The optimal catalyst (PDA-Fe-900) demonstrates a positive half-wave potential of 0.84 V (vs. RHE) in alkaline solution, outperforming the commercial Pt/C (0.83 V). In addition, PDA-Fe-900 delivers comparable ORR performance to commercial Pt/C in acidic electrolyte. Impressively, when PDA-Fe-900 is employed as an air cathode, it achieves large power densities of 163.0 mW/cm2 in liquid-state ZAB and 116.6 mW/cm2 in the flexible solid-state ZAB. This work provides an efficient ligand-assisted pathway for fabricating catalysts with dense and accessible Fe-NX sites as high-performance ORR electrocatalysts for ZABs.  相似文献   

14.
Nitrogen‐enriched porous nanocarbon, graphene, and conductive polymers attract increasing attention for application in supercapacitors. However, electrode materials with a large specific surface area (SSA) and a high nitrogen doping concentration, which is needed for excellent supercapacitors, has not been achieved thus far. Herein, we developed a class of tetracyanoquinodimethane‐derived conductive microporous covalent triazine‐based frameworks (TCNQ‐CTFs) with both high nitrogen content (>8 %) and large SSA (>3600 m2 g?1). These CTFs exhibited excellent specific capacitances with the highest value exceeding 380 F g?1, considerable energy density of 42.8 Wh kg?1, and remarkable cycling stability without any capacitance degradation after 10 000 cycles. This class of CTFs should hold a great potential as high‐performance electrode material for electrochemical energy‐storage systems.  相似文献   

15.
Electrochemical N2 reduction reactions (NRR) and the N2 oxidation reaction (NOR), using H2O and N2, are a sustainable approach to N2 fixation. To date, owing to the chemical inertness of nitrogen, emerging electrocatalysts for the electrochemical NRR and NOR at room temperature and atmospheric pressure remain largely underexplored. Herein, a new‐type Fe‐SnO2 was designed as a Janus electrocatalyst for achieving highly efficient NRR and NOR catalysis. A high NH3 yield of 82.7 μg h?1 mgcat.?1 and a Faraday efficiency (FE) of 20.4 % were obtained for NRR. This catalyst can also serve as an excellent NOR electrocatalyst with a NO3? yields of 42.9 μg h?1 mgcat.?1 and a FE of 0.84 %. By means of experiments and DFT calculations, it is revealed that the oxygen vacancy‐anchored single‐atom Fe can effectively adsorb and activate chemical inert N2 molecules, lowering the energy barrier for the vital breakage of N≡N and resulting in the enhanced N2 fixation performance.  相似文献   

16.
Networked polymers that had poly(ethylene glycol) (PEG) chains and lithium sulfonylimide salt structures were prepared by curing a mixture of poly(ethylene glycol) diglycidyl ether and lithium 3‐glycidyloxypropanesulfonyl‐trifluoromethanesulfonylimide with poly(ethylene glycol) bis(3‐aminopropyl) terminated. The obtained flexible self‐standing networked polymer films showed high thermal and mechanical stability with relatively high ionic conductivity. The room temperature ionic conductivity under a dry condition was in the range of 10?5 ~ 10?4 S m?1, which is one order of magnitude higher than the corresponding networked polymers having lithium sulfonate salt structures (10?6 ~ 10?5 S m?1). The film sample became swollen by immersing in propylene carbonate (PC) or PC solution of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The sample swollen in PC showed higher ionic conductivity (7.2 × 10?3 S m?1 at room temperature), and the sample swollen in 1.0 M LiTFSI/PC showed much higher ionic conductivity (8.2 × 10?1 S m?1 at room temperature). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
In this work, a thin, flexible and mechanically stable polymer conducting material (Silk‐Ion Jelly) was developed though application of Ion Jelly on to silk fabrics. Ion Jelly was prepared through jellification of a room temperature ionic liquid, 1‐butyl‐3‐methyl‐imidazolium dicyanamide ([bmim][dca]) using gelatin and water and applied to silk fabrics using two different processes: impregnation and in‐situ. Various parameters influencing ionic conductivity such as Ion Jelly composition (ratio of [bmim][dca], water and gelatin) and incorporation as well as the type of application process were thoroughly investigated. It was observed that the Ion Jelly compositions containing lower gelatin and water ratio as well as application through in‐situ process at high temperature (200 °C) led to considerable improvement in conductivity, mainly due to increased [bmim][dca] concentration, structural flexibility and reduced silk crystallinity. Silk‐Ion Jelly prepared using optimized conditions showed excellent mechanical stability and possessed high room temperature conductivity (2.9 × 10?3 S. cm?1), similar to [bmim][dca], and therefore, this novel ion conducting material may find potential applications in electrochemical devices due to its eco‐friendly preparation route using biomaterials and green solvents. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
We propose an electrochemical sensor based on applying two successive thin layers from a mixture of multiwalled carbon nanotubes‐ionic liquid crystal and crown ether at glassy carbon electrode surface (GC/(CNTs‐ILC)/Crown). The sensor was used for sensitive determination of neurotransmitters based on effective synergism between its components. The compact conducting surface of (CNTs ‐ ILC) with large surface area allowed the assembling of stable host‐guest inclusion complexes between crown ethers and neurotransmitters. The GC/(CNTs‐ILC)/Crown exhibited excellent electro‐catalytic activity toward the determination of serotonin (ST) in a wide linear dynamic range: 0.005 μmol L?1 to 100 μmol L?1. In the concentration range 0.005 μmol L?1 to 1 μmol L?1, the detection limit is 2.03×10?10 mol L?1 and quantification limit is 6.78×10?10 mol L?1 with correlation coefficient 0.999. The sensor was successfully applied for ST detection in human serum samples with satisfied recovery results. The sensor showed excellent analytical performance for the determination of ST in terms of low detection limit, good sensitivity and reproducibility. Furthermore excellent anti‐interference ability and simultaneous determination of ST in presence of other compounds as ascorbic acid, dopamine and antidepressant drug were achieved.  相似文献   

19.
A new analytical methodology for the electrochemical detection of the herbicide maleic hydrazide (3,6‐dihydroxypyridazine) by flow injection analysis is presented. This method is supported by the novel application of a palladium‐dispersed carbon paste electrode as an amperometric sensor for this herbicide. Maleic hydrazide shows anodic electrochemical activity on carbon‐based electrodes (glassy carbon or carbon paste electrodes) in all the pH range. This electrochemical activity is enhanced using metal‐dispersed carbon paste electrodes, especially at Pd‐dispersed CPE which displays good oxidation signals at 690 mV (0.050 M phosphate buffer pH 7.0), 140 mV lower than at unmodified electrodes. Under the optimized conditions, the electroanalytical performance of Pd‐dispersed CPE in flow injection analysis was excellent, with good reproducibility (RSD 3.3%) and a wide linear range (1.9×10?7 to 1.0×10?4 mol L?1). A detection limit of 1.4×10?8 mol L?1 (0.14 ng maleic hydrazide) was obtained for a sample loop of 100 μL at a fixed potential of 700 mV in 0.050 M phosphate buffer solution at pH 7.0 and a flow rate of 2.0 mL min?1. The proposed method was applied for the maleic hydrazide detection in natural drinking water samples.  相似文献   

20.
A series of hierarchical activated mesoporous carbons (AMCs) were prepared by the activation of highly ordered, body‐centered cubic mesoporous phenolic‐resin‐based carbon with KOH. The effect of the KOH/carbon‐weight ratio on the textural properties and capacitive performance of the AMCs was investigated in detail. An AMC prepared with a KOH/carbon‐weight ratio of 6:1 possessed the largest specific surface area (1118 m2 g?1), with retention of the ordered mesoporous structure, and exhibited the highest specific capacitance of 260 F g?1 at a current density of 0.1 A g?1 in 1 M H2SO4 aqueous electrolyte. This material also showed excellent rate capability (163 F g?1 retained at 20 A g?1) and good long‐term electrochemical stability. This superior capacitive performance could be attributed to a large specific surface area and an optimized micro‐mesopore structure, which not only increased the effective specific surface area for charge storage but also provided a favorable pathway for efficient ion transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号