共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ken Ikigaki Kenji Okada Yasuaki Tokudome Takashi Toyao Paolo Falcaro Christian J. Doonan Masahide Takahashi 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(21):6960-6964
The precise alignment of multiple layers of metal–organic framework (MOF) thin films, or MOF‐on‐MOF films, over macroscopic length scales is presented. The MOF‐on‐MOF films are fabricated by epitaxially matching the interface. The first MOF layer (Cu2(BPDC)2, BPDC=biphenyl‐4,4′‐dicarboxylate) is grown on an oriented Cu(OH)2 film by a “one‐pot” approach. Aligned second (Cu2(BDC)2, BDC=benzene 1,4‐dicarboxylate, or Cu2(BPYDC)2, BPYDC=2,2′‐bipyridine‐5,5′‐dicarboxylate) MOF layers can be deposited using liquid‐phase epitaxy. The co‐orientation of the MOF films is confirmed by X‐ray diffraction. Importantly, our strategy allows for the synthesis of aligned MOF films, for example, Cu2(BPYDC)2, that cannot be grown on a Cu(OH)2 surface. We show that aligned MOF films furnished with Ag nanoparticles show a unique anisotropic plasmon resonance. Our MOF‐on‐MOF approach expands the chemistry of heteroepitaxially oriented MOF films and provides a new toolbox for multifunctional porous coatings. 相似文献
3.
Xiao‐Gang Wang Lei Xu Min‐Jie Li Xian‐Zheng Zhang 《Angewandte Chemie (International ed. in English)》2020,59(41):18078-18086
Multi‐component MOFs contain multiple sets of unique and hierarchical pores, with different functions for different applications, distributed in their inter‐linked domains. Herein, we report the construction of a class of precisely aligned flexible‐on‐rigid hybrid‐phase MOFs with a unique rods‐on‐octahedron morphology. We demonstrated that hybrid‐phase MOFs can be constructed based on two prerequisites: the partially matched topology at the interface of the two frameworks, and the structural flexibility of MOFs with acs topology, which can compensate for the differences in lattice parameters. Furthermore, we achieved domain selective loading of multiple guest molecules into the hybrid‐phase MOF, as observed by scanning transmission electron microscopy–energy‐dispersive X‐ray spectrometry elemental mapping. Most importantly, we successfully applied the constructed hybrid‐phase MOF to develop a dual‐drug delivery system with controllable loading ratio and release kinetics. 相似文献
4.
Controlled Nucleation and Controlled Growth for Size Predicable Synthesis of Nanoscale Metal–Organic Frameworks (MOFs): A General and Scalable Approach 下载免费PDF全文
Xiao‐Gang Wang Qian Cheng Yun Yu Prof. Dr. Xian‐Zheng Zhang 《Angewandte Chemie (International ed. in English)》2018,57(26):7836-7840
Nanoscale metal–organic frameworks (nanoMOFs) are promising porous nanomaterials for diverse applications, such as catalysis, imaging, functional membranes, and drug delivery. At the nanoscale, the size of materials is critical for their properties and utility. Herein, a straightforward and convenient strategy is developed for size precisely controlled synthesis of nanoMOFs. Unlike other approaches, this strategy can directly give nanoMOFs of predicable sizes within a wide range without the time consuming trial‐and‐error process and without the addition of additives. In this approach, the preciseness of size control is ensured by the separated and controlled nucleation and growth. The size controlled synthesis of 9 kinds of most widely studied nanoMOFs confirms the versatility of this strategy. More importantly, this approach can be utilized for scale‐up synthesis of nanoMOFs with the same precise size control. 相似文献
5.
Mohammad Yaser Masoomi Ali Morsali Amarajothi Dhakshinamoorthy Hermenegildo Garcia 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(43):15330-15347
Mixed‐metal metal–organic frameworks (MM‐MOFs) can be considered to be those MOFs having two different metals anywhere in the structure. Herein we summarize the various strategies for the preparation of MM‐MOFs and some of their applications in adsorption, gas separation, and catalysis. It is shown that compared to homometallic MOFs, MM‐MOFs bring about the opportunity to take advantage of the complexity and the synergism derived from the presence of different metal ions in the structure of MOFs. This is reflected in a superior performance and even stability of MM‐MOFs respect to related single‐metal MOFs. Emphasis is made on the use of MM‐MOFs as catalysts for tandem reactions. 相似文献
6.
Siming Huang Xiaoxue Kou Jun Shen Guosheng Chen Gangfeng Ouyang 《Angewandte Chemie (International ed. in English)》2020,59(23):8786-8798
Cell‐free enzymatic catalysis (CFEC) is an emerging biotechnology that enable the biological transformations in complex natural networks to be imitated. This biomimetic approach allows industrial products such as biofuels and biochemical to be manufactured in a green manner. Nevertheless, the main challenge in CFEC is the poor stability, which restricts the effectiveness and lifetime of enzymes in sophisticated applications. Immobilization of the enzymes within solid carriers is considered an efficient strategy for addressing these obstacles. Specifically, putting an “armor‐like” porous metal–organic framework (MOF) exoskeleton tightly around the enzymes not only shields the enzymes against external stimulus, but also allows the selective transport of guests through the accessible porous network. Herein we present the concept of this biotechnology of MOF‐entrapped enzymes and its cutting‐edge applications. 相似文献
7.
8.
Oleksandr S. Bushuyev Dr. Geneva R. Peterson Dr. Preston Brown Dr. Amitesh Maiti Dr. Richard H. Gee Prof. Brandon L. Weeks Prof. Louisa J. Hope‐Weeks 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(5):1706-1711
Second‐generation cobalt and zinc coordination architectures were obtained through efforts to stabilize extremely sensitive and energetic transition‐metal hydrazine perchlorate ionic polymers. Partial ligand substitution by the tridentate hydrazinecarboxylate anion afforded polymeric 2D‐sheet structures never before observed for energetic materials. Carefully balanced reaction conditions allowed the retention of the noncoordinating perchlorate anion in the presence of a strongly chelating hydrazinecarboxylate ligand. High‐quality X‐ray single‐crystal structure determination revealed that the metal coordination preferences lead to different structural motifs and energetic properties, despite the nearly isoformulaic nature of the two compounds. Energetic tests indicate highly decreased sensitivity and DFT calculations suggest a high explosive performance for these remarkable structures. 相似文献
9.
Chaoqiang Qiao Ruili Zhang Yongdong Wang Qian Jia Xiaofei Wang Zuo Yang Tengfei Xue Renchuan Ji Xiufang Cui Zhongliang Wang 《Angewandte Chemie (International ed. in English)》2020,59(39):16982-16988
The blood–brain barrier (BBB) restricts access to the brain of more than 98 % of therapeutic agents and is largely responsible for treatment failure of glioblastoma multiforme (GBM). Therefore, it is of great importance to develop a safe and efficient strategy for more effective drug delivery across the BBB into the brain. Inspired by the extraordinary capability of rabies virus (RABV) to enter the central nervous system, we report the development and evaluation of the metal–organic framework‐based nanocarrier MILB@LR, which closely mimicked both the bullet‐shape structure and surface functions of natural RABV. MILB@LR benefited from a more comprehensive RABV‐mimic strategy than mimicking individual features of RABV and exhibited significantly enhanced BBB penetration and brain tumor targeting. MILB@LR also displayed superior inhibition of tumor growth when loaded with oxaliplatin. The results demonstrated that MILB@LR may be valuable for GBM targeting and treatment. 相似文献
10.
Synthesis of Nanoporous Carbon–Cobalt‐Oxide Hybrid Electrocatalysts by Thermal Conversion of Metal–Organic Frameworks 下载免费PDF全文
Dr. Watcharop Chaikittisilp Dr. Nagy L. Torad Dr. Cuiling Li Dr. Masataka Imura Dr. Norihiro Suzuki Dr. Shinsuke Ishihara Prof. Dr. Katsuhiko Ariga Prof. Dr. Yusuke Yamauchi 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(15):4217-4221
Nanoporous carbon–cobalt‐oxide hybrid materials are prepared by a simple, two‐step, thermal conversion of a cobalt‐based metal–organic framework (zeolitic imidazolate framework‐9, ZIF‐9). ZIF‐9 is carbonized in an inert atmosphere to form nanoporous carbon–metallic‐cobalt materials, followed by the subsequent thermal oxidation in air, yielding nanoporous carbon–cobalt‐oxide hybrids. The resulting hybrid materials are evaluated as electrocatalysts for the oxygen‐reduction reaction (ORR) and the oxygen‐evolution reaction (OER) in a KOH electrolyte solution. The hybrid materials exhibit similar catalytic activity in the ORR to the benchmark, commercial, Pt/carbon black catalyst, and show better catalytic activity for the OER than the Pt‐based catalyst. 相似文献
11.
Xinyu Yang Shuai Yuan Dr. Lanfang Zou Hannah Drake Yingmu Zhang Dr. Junsheng Qin Dr. Ali Alsalme Dr. Hong‐Cai Zhou 《Angewandte Chemie (International ed. in English)》2018,57(15):3927-3932
Epitaxial growth of MOF‐on‐MOF composite is an evolving research topic in the quest for multifunctional materials. In previously reported methods, the core–shell MOFs were synthesized via a stepwise strategy that involved growing the shell‐MOFs on top of the preformed core‐MOFs with matched lattice parameters. However, the inconvenient stepwise synthesis and the strict lattice‐matching requirement have limited the preparation of core–shell MOFs. Herein, we demonstrate that hybrid core–shell MOFs with mismatching lattices can be synthesized under the guidance of nucleation kinetic analysis. A series of MOF composites with mesoporous core and microporous shell were constructed and characterized by optical microscopy, powder X‐ray diffraction, gas sorption measurement, and scanning electron microscopy. Isoreticular expansion of microporous shells and orthogonal modification of the core was realized to produce multifunctional MOF composites, which acted as size selective catalysts for olefin epoxidation with high activity and selectivity. 相似文献
12.
Hypoxia-activated prodrugs (HAPs) with selective toxicity in tumor hypoxic microenvironments are a new strategy for tumor treatment with fewer side effects. Nonetheless, the deficiency of tumor tissue enrichment and tumor hypoxia greatly affect the therapeutic effect of HAPs. Herein, we design an active targeted drug delivery system driven by AS1411 aptamer to improve the tumor tissue enrichment of HAPs. The drug delivery system, called TPZ@Apt-MOF (TA-MOF), uses iron-based MOF as a carrier, surface-modified nucleolin aptamer AS1411, and the internal loaded hypoxia activation prodrug TPZ. Compared with naked MOF, the AS1411-modified MOF showed a better tumor targeting effect both in vitro and in vivo. MOF is driven by GSH to degrade within the tumor, producing Fe2+, and releasing the cargo. This process leads to a high consumption of the tumor protective agent GSH. Then, the Fenton reaction mediated by Fe2+ not only consumes the intracellular oxygen but also increases the intracellular production of highly toxic superoxide anions. This enhances the toxicity and therapeutic effect of TPZ. This study provides a new therapeutic strategy for cancer treatment. 相似文献
13.
Metal–organic frameworks (MOFs) have evolved as an exciting class of materials in the domain of porous materials. The unique features of these materials arise from the combined properties of metal ions/clusters and organic struts which form the building blocks of these fascinating architectures. Among other multifarious applications, MOFs have shown tremendous applications as sensory materials for a wide variety of species. The signal transduction induced mechanism in these confined nanospaces generate optical output in response to a particular analyte which can be detected by wide variety of detection techniques. Fluorometric methods of sensing is one of widely studied method over past few decades. MOF‐based fluorometric detection is a key research theme developed over the past few years. In this review, we give a brief overview of the recent developments of MOFs as “turn‐on” sensors for a wide range of analytes (viz. cations, anions, volatile organic compounds (VOCs), etc.). 相似文献
14.
Lauren K. Macreadie Ravichandar Babarao Caitlin J. Setter Seok J. Lee Omid T. Qazvini Aaron J. Seeber John Tsanaktsidis Shane G. Telfer Stuart R. Batten Matthew R. Hill 《Angewandte Chemie (International ed. in English)》2020,59(15):6090-6098
The resurgence of interest in the hydrogen economy could hinge on the distribution of hydrogen in a safe and efficient manner. Whilst great progress has been made with cryogenic hydrogen storage or liquefied ammonia, liquid organic hydrogen carriers (LOHCs) remain attractive due to their lack of need for cryogenic temperatures or high pressures, most commonly a cycle between methylcyclohexane and toluene. Oxidation of methylcyclohexane to release hydrogen will be more efficient if the equilibrium limitations can be removed by separating the mixture. This report describes a family of six ternary and quaternary multicomponent metal–organic frameworks (MOFs) that contain the three‐dimensional cubane‐1,4‐dicarboxylate (cdc) ligand. Of these MOFs, the most promising is a quaternary MOF (CUB‐30), comprising cdc, 4,4′‐biphenyldicarboxylate (bpdc) and tritopic truxene linkers. Contrary to conventional wisdom that adsorptive interactions with larger, hydrocarbon guests are dominated by π–π interactions, here we report that contoured aliphatic pore environments can exhibit high selectivity and capacity for LOHC separations at low pressures. This is the first time, to the best of our knowledge, where selective adsorption for cyclohexane over benzene is witnessed, underlining the unique adsorptive behavior afforded by the unconventional cubane moiety. 相似文献
15.
Huimin Wang Yuqi Chen Hong Wang Xiaoqing Liu Xiang Zhou Fuan Wang 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(22):7458-7462
DNAzymes have been recognized as potent therapeutic agents for gene therapy, while their inefficient intracellular delivery and insufficient cofactor supply precludes their practical biological applications. Metal–organic frameworks (MOFs) have emerged as promising drug carriers without in‐depth consideration of their disassembled ingredients. Herein, we report a self‐sufficient MOF‐based chlorin e6‐modified DNAzyme (Ce6‐DNAzyme) therapeutic nanosystem for combined gene therapy and photodynamic therapy (PDT). The ZIF‐8 nanoparticles (NPs) could efficiently deliver the therapeutic DNAzyme without degradation into cancer cells. The pH‐responsive ZIF‐8 NPs disassemble with the concomitant release of the guest DNAzyme payloads and the host Zn2+ ions that serve, respectively, as messenger RNA‐targeting agent and required DNAzyme cofactors for activating gene therapy. The auxiliary photosensitizer Ce6 could produce reactive oxygen species (ROS) and provide a fluorescence signal for the imaging‐guided gene therapy/PDT. 相似文献
16.
Yonghwi Kim Tao Yang Gyeongwon Yun Mohammad Bagher Ghasemian Jaehyoung Koo Eunsung Lee Sung June Cho Kimoon Kim 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2015,127(45):13471-13476
A new approach to the synthesis of hierarchical micro‐ and mesoporous MOFs from microporous MOFs involves a simple hydrolytic post‐synthetic procedure. As a proof of concept, a new microporous MOF, POST‐66(Y), was synthesized and its transformation into a hierarchical micro‐ and mesoporous MOF by water treatment was studied. This method produced mesopores in the range of 3 to 20 nm in the MOF while maintaining the original microporous structure, at least in part. The degree of micro‐ and mesoporosity can be controlled by adjusting the time and temperature of hydrolysis. The resulting hierarchical porous MOF, POST‐66(Y)‐wt, can be utilized to encapsulate nanometer‐sized guests such as proteins, and the enhanced stability and recyclability of an encapsulated enzyme is demonstrated. 相似文献
17.
Xiaojing Liu Mariana Kozlowska Timur Okkali Danny Wagner Tomohiro Higashino Gerald Brenner‐Weiß Stefan M. Marschner Zhihua Fu Qiang Zhang Hiroshi Imahori Stefan Brse Wolfgang Wenzel Christof Wll Lars Heinke 《Angewandte Chemie (International ed. in English)》2019,58(28):9590-9595
Photoconductivity is a characteristic property of semi‐conductors. Herein, we present a photo‐conducting crystalline metal–organic framework (MOF) thin film with an on–off photocurrent ratio of two orders of magnitude. These oriented, surface‐mounted MOF thin films (SURMOFs), contain porphyrin in the framework backbone and C60 guests, loaded in the pores using a layer‐by‐layer process. By comparison with results obtained for reference MOF structures and based on DFT calculations, we conclude that donor–acceptor interactions between the porphyrin of the host MOF and the C60 guests give rise to a rapid charge separation. Subsequently, holes and electrons are transported through separate channels formed by porphyrin and by C60, respectively. The ability to tune the properties and energy levels of the porphyrin and fullerene, along with the controlled organization of donor–acceptor pairs in this regular framework offers potential to increase the photoconduction on–off ratio. 相似文献
18.
Freddy Marpaung Minjun Kim Junayet Hossain Khan Konstantin Konstantinov Yusuke Yamauchi Md. Shahriar A. Hossain Jongbeom Na Jeonghun Kim 《化学:亚洲杂志》2019,14(9):1331-1343
Metal–organic framework (MOF)‐derived nanoporous carbon materials have attracted significant interest due to their advantages of controllable porosity, good thermal/chemical stability, high electrical conductivity, catalytic activity, easy modification with other elements and materials, etc. Thus, MOF‐derived carbons have been used in numerous applications, such as environmental remediations, energy storage systems (i.e. batteries, supercapacitors), and catalysts. To date, many strategies have been developed to enhance the properties and performance of MOF‐derived carbons. Herein, we introduce and summarize recent important approaches for advanced MOF‐derived carbon structures with a focus on precursor control, heteroatom doping, shape/orientation control, and hybridization with other functional materials. 相似文献
19.
Sheng‐Li Hou Jie Dong Xiao‐Lei Jiang Zhuo‐Hao Jiao Bin Zhao 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(2):587-591
Cyclization of propargylic alcohols with CO2 is an important reaction in industry, and noble‐metal catalysts are often employed to ensure the high product yields under environmentally friendly conditions. Herein a porous noble‐metal‐free framework 1 with large 1D channels of 1.66 nm diameter was synthesized for this reaction. Compound 1 exhibits excellent acid/base stability, and is even stable in corrosive triethylamine for one month. Catalytic studies indicate that 1 is an effective catalyst for the cyclization of propargylic alcohols and CO2 without any solvents under mild conditions, and the turnover number (TON) can reach to a record value of 14 400. Furthermore, this MOF catalyst also has rarely seen catalytic activity when the biological macromolecule ethisterone was used as a substrate. Mechanistic studies reveal that the synergistic catalytic effect between CuI and InIII plays a key role in the conversion of CO2. 相似文献
20.
David A. Burns Eric M. Press M. A. Siegler Rebekka S. Klausen V. Sara Thoi 《Angewandte Chemie (International ed. in English)》2020,59(2):763-768
We report the synthesis of a set of 2D metal–organic frameworks (MOFs) constructed with organosilicon‐based linkers. These oligosilyl MOFs feature linear SinMe2n(C6H4CO2H)2 ligands (lin‐Sin, n=2, 4) connected by Cu paddlewheels. The stacking arrangement of the 2D sheets is dictated by van der Waals interactions and is tunable by solvent exchange, leading to reversible structural transformations between many crystalline and amorphous phases. 相似文献